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ABSTRACT. In this paper we prove that injective homomorphisms between Te-
ichmiller modular groups of compact orientable surfaces are necessary isomor-
phisms, if an appropriately measured “size” of the surfaces in question differs by at
most one. In particular, we establish the co-Hopfian property for modular groups
of surfaces of positive genus.

1. INTRODUCTION

Let S be a compact orientable surface. The Teichmuller modular group Modg of
the surface S, also known as the mapping class group of S, is the group of isotopy
classes of orientation preserving diffeomorphisms S — 5. The pure modular group
PModg is the subgroup of Modgs consisting of isotopy classes of diffeomorphisms
which preserve each component of d5. The extended modular group Modg of S is
the group of isotopy classes of all (including orientation-reversing) diffeomorphisms
S = 5.

Before turning to the main results of the paper we would like to point out the
following two theorems.

Theorem 1. Let S be a compact connected orientable surface of positive genus. Sup-
pose that S is nol a torus with at most two holes. Then Mods is co-Hopfian, (i.e.
every injective homomorphism Mods — Modg is an isomorphism).

Note that Modg is also a Hopfian group, i.e. every surjective homomorphism
Mods — Modg is an isomorphism. As is well known, a group is Hopfian if it is
residually finite. The last property was proved for modular groups by E. Grossman
[G]. See also [I3], Exercise 1.
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Theorem 1 provides an affirmative answer to a question communicated by D. D.
Long to the first author: “Is every injective homomorphism p : Mods — Modg an
isomorphism provided S is a closed surface of genus greater than 17”7

Note that it is usually quite nontrivial to establish the co-Hopfian property for a
group of geometric interest. G. Prasad [P] proved that irreducible lattices in linear
analytic semisimple groups are co-Hopfian if the dimension of the associated symmet-
ric space is # 2 (cf. [P], Proposition). After the initial results of M. Gromov [GG] (cf.
[GG], 5.4.B), E. Rips and Z. Sela [RS] and Z. Sela [S] proved recently the co-Hopfian
property for a wide class of hyperbolic groups (cf. [RS], Section 3). So, Theorem 1
turns out to be a new instance of the well know but still mysterious analogy between
modular groups and lattices and between Teichmiller spaces and hyperbolic spaces.

Theorem 2. Let S be a closed orientable surface of genus at least 2. Then there is
no injective homomorphisms Out(m(S)) — Aut(m(S)). In particular, the natural
epimorphism Aut(m(S)) — Out(m(S)) is nonsplit.

The second statement of Theorem 2 answers a question of J. S. Birman, stated
as a part of Problem 8 of S. M. Gersten’s list of Selected Problems in [GS]. For
genus at least 3 this nonsplitting result follows also from the results of G. Mess [Me],
as explained in the next paragraph. (The relation between the Mess’ paper [Me]
and the Birman’s question apparently went unnoticed.) Birman asked whether the
natural homomorphism Aut(m(5)) — Out(m(.5)) splits when S is a closed surface
of genus greater than 1. Note that this homomorphism is an isomorphism when S
is a sphere or a torus. Birman suggested this question as an algebraic variation of
the generalized Nielsen realization problem, which also has an affirmative solution
when S is a sphere or a torus. Contrary to the statement in Problem 8 in [GS], it is
not equivalent to this realization problem. The realization problem seems to be of a
different nature than Birman’s question.

Theorems 1 and 2 are deduced from our main results, concerned with injective
homomorphisms between Teichmiiller modular groups. The relationship between
Long’s question and injective homomorphisms between modular groups needs no
explanation. The relationship between Theorem 2 and injective homomorphisms be-
tween modular groups may be summarized as follows. Let S be a closed surface of
genus greater than 1 and S’ be the surface obtained from S by deleting the interior
of a disc containing the basepoint x for the fundamental group m1(5). Every self-
diffeomorphism of S’ extends to a self-diffeomorphism of S fixing z. In this way, we
obtain a natural homomorphism Modg — Modg. One may identify this homomor-
phism with Aut(7m(S)) — Out(m(5)); cf. the proof of Theorem 14.2 for details.
Given this (fairly well known) identification, the above answer to Birman’s question
for genus at least 3 follows from the Proposition 2 of G. Mess’ paper [Me]. And the
more general result of Theorem 2 about the nonexistence of injective homomorphisms
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Out(m(5)) — Aut(m(.5)) follows from the nonexistence of injective homomorphisms
MOdS — MOdSI.

The results of [I12] and [M] provide a complete description of automorphisms of
modular groups. Roughly speaking, essentially all automorphisms of modular groups
are geometric. Based upon these results on automorphisms, one might expect that
essentially all injective homomorphisms between modular groups are geometric. Our
main results, stated below as Theorems 3-6, verify this expectation for a large class

of pairs (.5, 57).

Theorem 3. Let S and S' be compact connected orientable surfaces. Suppose that
the genus of S is at least 2 and S’ is notl a closed surface of genus 2. Suppose that the
mazima of ranks of abelian subgroups of Mods and Modg: differ by at most one. If p :
Modgs — Modg: is an injective homomorphism, then p is induced by a diffeomorphism
H:S5— 95, (ie. p(|[G]) = [HGH™'] for every orientation preserving diffeomorphism
G : S — S, where we denote by [F] the isotopy class of a diffeomorphism F). In
particular, p is an isomorphism.

If we strengthen the hypothesis on the maxima of ranks of abelian subgroups, we
can allow S to be of genus one also, with only few exceptions. The finitely many
exceptional pairs of surfaces (5, 5"), referred to in the following theorem, are listed
in Section 10.4.

Theorem 4. Let S and S’ be compact connected orientable surfaces. Suppose that S
has posilive genus, S is not a torus with at most one hole, S" is not a closed surface
of genus 2 and (S,S5") is not an exceptional pair. If the mazima of ranks of abelian
subgroups of Modg and Modg are equal and p : Mods — Modg/ ts an injective
homomorphism, then p is induced by a diffeomorphism S — 5.

The maxima of ranks of abelian subgroups of Modg can be easily computed: it is
equal to 3g — 3+ b, where g is the genus and b is the number of boundary components
of S, according [BLM]. This number turns out to be a convenient measure of “size”
of a surface 5.

Similar results are obtained when S’ is a closed surface of genus 2. The statements
involve the exceptional outer automorphism 7 : Mods: — Modss which maps a Dehn
twist about a nonseparating circle on S to its product with the unique nontrivial
element of the center of Modg ([12], [M]). No restrictions on the maxima of the ranks
of abelian subgroups are needed in the following theorem because, in fact, under its
assumptions the maxima of ranks are automatically equal (cf. the proof of Theorem

12.16).

Theorem 5. Let S be a compact connected orientable surface of genus at least 2.
Let S be a closed surface of genus 2. Let T be the exceptional outer automorphism of
Modg/. If p : Mods — Modg is an injective homomorphism, then either p or 7 op
is induced by a diffeomorphism S — S’.
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Theorem 6. Let S be a compact connected orientable surface of positive genus. Let
S" be a closed surface of genus 2. Lel T be the exceptional automorphism of Modg:.
If the maxima of ranks of abelian subgroups of Mods and Modg are equal and p :
Mods — Modg: is an injective homomorphism, then either p or 7o p is induced by a
diffeomorphism S — S'.

Theorems 3-6 generalize the following results of [I2] and [M].

Corollary 1. ([I12]) Let S be a compact connected orientable surface of positive genus.
Suppose that S is not a torus with at most two holes or a closed surface of genus 2.
Then every automorphism of Mods is given by the restriction of an inner automor-
phism of Modg. In particular, Out(Modg) is isomorphic to Z|2Z.

Corollary 2. ([M]) Let S be a closed surface of genus 2. Let T be the exceptional
outer automorphism of Modgs. Then every automorphism of Modg is given by the
restriction of an inner automorphism of Mods or by the composilion of such an
automorphism with 7. In particular, Out(Mods) is isomorphic to Z /27 x Z |27Z.

Note that Theorem 1 follows immediately from Theorems 4 and 6 and, assuming
the brief explanation given above, Theorem 2 follows from Theorems 3 and 5.

While Theorems 3-6 are, probably, not the best possible in terms of the restric-
tions on the pair (5,5"), some restrictions are certainly necessary in order to keep
their conclusions. In fact, we will construct several families of examples of injective
homomorphisms Mods — Modg: such that Mods and Modgs: are not isomorphic.
Since our examples are still in a natural sense geometric, this leaves place for the
hope that all injective homomorphisms between modular groups are geometric in an
appropriate sense.

The techniques employed in this paper are geometric in nature. Like those em-
ployed in [BLM], [I2] and [M], they are based upon Thurston’s theory of surface
diffeomorphisms. More precisely, the arguments of this paper play upon restrictions
upon commuting elements in Modgs which follow from Thurston’s theory. We say
that an injective homomorphism is twist-preserving if it sends Dehn twists about
nonseparating circles to Dehn twists. The crucial step in the proof of Theorems 3-6,
as in the proof of Corollary 1 in [I2], is to show that an injective homomorphism
Mods — Modg: is twist-preserving. The last property forces an injective homomor-
phism to be induced by a diffecomorphism S — S, provided the genus of S is at least 2,
without any additional assumptions on S’. (This crucial step fails when S’ is a closed
surface of genus 2. However, as in the proof of Corollary 2 in [M], the failure is ex-
actly compensated for by the exceptional outer automorphism 7 : Modg: — Modg:.)
Since our homomorphisms are only injective, the reduction to twist-preserving homo-
morphisms does not follow immediately from the algebraic characterization of Dehn
twists given in [I12]. We do not know of an algebraic characterization of Dehn twists
which would yield an immediate reduction in the present context. Nevertheless, the
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assumption on the maxima of the ranks of abelian subgroups allows us to complete
this crucial step of the argument. At the same time, under this assumption we are
able to deal with the twist-preserving homomorphisms in the case when S has genus
1 also, with few exceptions.

Here is an outline of the paper. In Section 2, we review the basic notions and
results related to Teichmiller modular groups. We assume that the reader is familiar
with the fundamentals of Thurston’s theory of surfaces (cf. [FLP]) and do not recall
them. We also correct some minor mistakes in [I3]; cf. Remark 2.14.

In Section 3, we discuss two general constructions of injective homomorphisms
between modular groups: (i) doubling and (ii) lifting to certain characteristic covers.
These constructions produce examples which are not induced by diffeomorphisms,
providing a contrast to our results on injective homomorphisms. We close the section
with a family of examples with source a torus with one hole. These “hybrid” examples
are produced by iterating modified versions of the doubling and lifting constructions.
The results of this section are not used in the rest of the paper.

Section 4 discusses the basic relations between a pair of Dehn twists. The results of
this section will play a role in the present context parallel to that played by Theorem
3.1 of [12] and Lemma 4.3 of [M] in the original proofs of Corollaries 1 and 2 above.
That is, they allow us to conclude that an injective homomorphism respects the
geometric intersection properties of certain configurations of circles. These results
are implicit in the proof of Lemma 4.3 of [M].

Section 5 concerns the relationship between Dehn twists supported on neighbor-
hoods of boundary components of .S and Dehn twists supported on nontrivial circles
on S. The main tool in this section is the well known “lantern” relation. Roughly
speaking, the results of this section allow us to conclude that an injective homo-
morphism respects the distinction between boundary components and nonseparating
circles.

In Section 6, we discuss the centers of modular groups and closely related sub-
groups. The results of this section are well known. Since there does not seem to be
an account of these results in the literature, we give complete proofs here. These
results play the same role in the present context as in [I2] and [M]. That is, roughly
speaking, they allow us to conclude that an injective homomorphism is controlled by
the correspondence it induces between certain circles on the source and the target.

In Section 7 is devoted to a technical tool crucial for the next Section 8: a special
configuration of circles on S and its basic properties. It will be used also in Section
13.

In Section 8 we prove, under two different (but overlapping) assumptions that
any injective twist-preserving homomorphism Mods — ModY is, in fact, induced
by some diffeomorphism S — S’ (and, in particular, is an isomorphism). This is
done in Theorem 8.9 under the assumption that the genus of S is at least 2, and
in Theorem 8.15 under the assumption that the genus of S is at least 1 and the
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maxima of ranks of maximal abelian subgroups differ by at most 1. (This is the
first place where we see the assumption on maxima of ranks of abelian subgroups
entering into our arguments.) The first step in the proof is familiar from [I12] and [M].
Namely, by appealing to the results of Section 4, the configuration of circles on §
introduced in Section 7 is shown to correspond to a configuration on S’ with the same
intersection properties. It is then shown that this correspondence of configurations
of circles extends to an embedding H : S — S’. If S is closed, then H must be a
diffeomorphism. In fact, the embedding H must be a diffeomorphism under weaker
hypotheses on S. In order to prove this, it suffices to show that H sends components
of dS to components of d5’. Our arguments to this end employ the results of Section
5. Ultimately, the key role is played by the “lantern” relation.

Section 9 concerns systems of circles on S whose components are topologically
equivalent on S. We prove that, except for a finite number of surfaces S, the compo-
nents of such a system C' must be nonseparating, provided the number of components
of C' differs by at most one from the number of components of a maximal system of
circles on S. (This assumption, of course, is naturally related to the assumption on
the maxima of ranks of abelian subgroups in Theorems 3-6.) Roughly speaking, these
results allow us to conclude that an injective homomorphism respects the distinction
between nonseparating and separating circles. The finite number of exceptions to
the results of this section account for the surfaces S and S explicitly excluded in the
statement of Theorem 4.

We say that an injective homomorphism is almost twist-preserving if it sends some
power of a Dehn twist about any nonseparating circle to a power of a Dehn twist.
Section 10 is devoted to extending the results of Section 8 to almost twist-preserving
injective homomorphismes.

The main task of the next three sections is to reduce the proofs of Theorems 36
to the case almost twist-preserving homomorphisms. In Section 11, we compute the
centers of centralizers of mapping classes in pure subgroups of modular groups of
finite index. These centers are free abelian groups of finite rank. Roughly speaking,
these results will allow us to control the images of powers of Dehn twists under an
injective homomorphism. Hence, they play a similar role in the present context as
that played by the algebraic characterization of Dehn twists in [I12] and the “vir-
tual” characterization of [M]. These results, however, do not provide a “virtual”
characterization of Dehn twists. Hence, they do not lead immediately to the desired
reduction.

In Section 12 we prove Theorems 1, 4, 5 and 6. On the basis of the results in Section
11, we are immediately led to conclude that the canonical reduction systems of the
images of Dehn twists about nonseparating circles contain at most two components.
The next step of the argument is to rule out pseudo-Anosov components of these
images. Roughly speaking, this is done on the basis that there is not enough room in
the target surface. At this point, we know that powers of these images are multitwists
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about one or two circles on the target surface. In the first case our homomorphism
is almost twist-preserving. In the second case we derive several additional properties
of it, which imply, in particular, that the maxima of ranks of abelian subgroups of
Modg and Modg: differ by one. It is then easy to see that this contradicts to the
assumptions of Theorems 1, 4, 5 and 6.

Section 13 is devoted to the proof of Theorem 3. Here the maxima of the ranks of
abelian subgroups can actually differ. The argument is based on a two fold proof by
contradiction: (i) as we saw in Section 12, the contrary assertion implies the existence
of a reduction circle, (ii) the lantern relation implies that some power of the Dehn
twist along this reduction circle is in the image of the injective homomorphism.
Since the Dehn twist along a reduction circle commutes with this image, condition
(ii) contradicts the discussion in Section 5. In this way, we complete the proofs.
In particular, the lantern relation is the key to the whole argument here. As an
application of Theorem 3, we prove a nonsplitting result at the the end of this section;
cf. Theorem 13.8.

Finally, Section 14 is devoted to the proof of Theorem 2.

The first author would like to thank J. Birman, D. Long and G. Prasad for stimulat-
ing discussions. In particular, D. Long asked him the above question about injective
endomorphisms of modular groups during a conference in Marseille-Luminy in 1989.
Both authors thank F. Letoutchaia for the preparation of the computer pictures for
this paper.

2. PRELIMINARIES

In this section, we discuss background material used throughout the paper. We
start with a review of basic definitions and notations used in the paper. Then, we turn
to more special notions of a pure element and of a reduction system. We will not only
review the definitions and the basic properties, but also extend some results about
reduction systems proved in [I3] from elements acting trivially on H(S,Z/moZ) for
some mg > 3 (which are always pure) to general pure elements. (To a big extent, these
more general results are implicitly contained in [I3].) Working in such a generality has
some advantages explained and illustrated by examples in Remark 2.13. The main
results are summarized in Theorems 2.7-2.11. The discussion of this topic provided
us with an opportunity to correct some arguments in [I3], which is done in Remark
2.14.

2.1. Notations and basic notions. Let S be a compact connected orientable sur-
face of genus g with b boundary components. A circle on S is a one-dimensional
closed connected submanifold of S. We recall that a circle on S is nontrivial if it
is not the boundary of a disc in S and cannot be deformed into 95. By V/(S5) we
denote the set of isotopy classes of nontrivial circles on S. It is empty precisely when
S is a sphere, a disc, an annulus or a disc with two holes. The extended modular
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group Mod%s of S acts in an obvious way on V(.5). Usually we are interested only in
the action of modular groups Modg itself. By V4(.5) we denote the subset of V/(.5)
consisting of isotopy classes of nonseparating circles on S. This subset is equal to
V(S) precisely when S is a sphere, a disc, an annulus, a disc with two holes or a torus
with at most one hole. The action of Modg on V/(5) restricts to an action on V5(.5).
The group Modg also acts in an obvious way on the set of boundary components of
S. The pure modular group PModg is nothing else as the kernel of this action, (i.e.
PMods = {f € Modgs|f(¢) = ¢ for each component ¢ of S}). Since every permuta-
tion of the components of 35 is induced by an orientation preserving diffeomorphism
S — S, the group PModg is a normal subgroup of index 6! in Mods.

The most important elements of Modg are the Dehn twists. If S is oriented, we
may distinguish between the right and left Dehn twists. If an orientation of the
surface S is fixed, then, for each circle @ on S, we denote by ¢, the right Dehn twist
aboul a; 1, € Mods. Then ;! is the left Dehn twist about a. The Dehn twist ¢, only
depends upon the isotopy class a of a. This allows us also denote it by ¢, and call it
the Dehn twist about «. If a is a trivial circle on S, then ¢, is the trivial element of
Modg. According to Dehn [D], PModgs is generated by Dehn twists along nontrivial
circles on S. If ¢ > 1, then, moreover, PModg is generated by Dehn twists along
nonseparating circles on S. Cf., for example, [I1], Section 5.2 for an easy proof.

A one-dimensional submanifold C' of S is called a system of circles on S, if the
components of (' are nontrivial and pairwise nonisotopic. If C' is a system of circles,
we call any composition of powers of Dehn twists about components of C' a multitwist
about C'. In particular, any power of a Dehn twist is a multitwist.

If g > 1, then there exists a maximal system C' of circles on S such that each com-
ponent of C' is a nonseparating circle on S. Moreover, any system of nonseparating
circles on S may be enlarged to a maximal system of circles on S such that each
component of C' is a nonseparating circle on 5. Any maximal system of circles on §
consists of max{0,3g —3+b} components, if S is not a closed torus (when it consists
of one circle).

For every system of circles C' on S, we denote by S¢ the result of cutting .S along C'.
Each component @) of S¢ is a compact connected orientable surface. If S has negative
Euler characteristic, then each component ) of S¢ has negative Euler characteristic.
Each component of 0@ corresponds either to a component of 95 or to a component
of C. If at least one component of Q) corresponds to a component of 35, we say that
Q) is peripheral to S. Otherwise, we say that () is interior to S. If no two components
of Q) correspond to the same component of C', we say that @) is embedded in S. If S
has negative Euler characteristic, then €' is maximal if and only if each component
of S¢ is a disc with two holes. We say that two distinct components a and b of a
system of circles are adjacent if there exists a component @) of S¢ such that a and b
both correspond to components of 9Q).

For a system of circles C' on S we denote by T the subgroup of Modg generated
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by the Dehn twists about the components of €. The group Ty is a free abelian
and is freely generated by these Dehn twists. By the definition, elements of T are
multitwists about C.If S has negative Euler characteristic, then by Theorem A of
[BLM], any abelian subgroup G of Modg is finitely generated with torsion free rank
bounded above by 3g — 3 + b. Otherwise, the rank is bounded by 1 if S is a closed
torus, and by 0 if S is sphere with < 3 holes. Moreover, these bounds are exact. In
particular, if C' is a maximal system of circles on S, then T¢ is a free abelian subgroup
of maximum rank in Modg.

The complex of curves C(S) of S is a simplicial complex on the set of vertices
V(S). A subset o of V(5) is a simplex of C(5) if there exists a system of circles C'
on S such that o is the set of isotopy classes of components of C'. Any such system
of circles C is called a realization of o. A realization of a simplex o is well defined
up to isotopy on S. If ¢ is a multitwist about a realization C' of o, we will say also
that ¢ is a multitwist about o.

For every pair of simplices o and 7 of C(S), the geometric intersection number
i(o,7) of o and 7 is the minimum number of points of C'N D over all realizations C' of
o and D of 7. The intersection number (o, 7) = 0 if and only if o U 7 is a simplex of
C'(S). In particular, a subset o of V(.5) is a simplex of C'(S) if and only if i(a, ) = 0
for every pair of vertices a, 3 € o. If C' and D are systems of circles on 5, we denote
by ¢(C, D) the intersection number i(o, 7), where o is the simplex corresponding to
C' and 7 is the simplex corresponding to D. We say that C' and D are in minimal
position if the number of points of intersection of C' and D is equal to i(C, D) and
C is transverse to D. We say that a configuration (i.e. a set) of circles is in minimal
position if each pair of circles of the configuration is in minimal position.

2.2. Pure elements. A diffeomorphism F': S — 5 is called pure if there is a system
of circles C' on S such that (F, (') satisfies the following condition:

Condition P. All points of ' and 05 are fixed by F, F preserves each component
of S¢ and, for each component ) of S¢, Fg is isotopic either to a pseudo-Anosov
diffeomorphism or to the identity.

This condition is the same as the Condition (P) of [I2] and is slightly stronger than
the Condition (P) of [I3] in that in [I3] it is not required that F is fixed on 5. (In
fact, in all applications of the Condition (P) in [I3] the more strong version is also
fullfilled, as it follows from Theorem 1.2 of [I3].)

An element f of Modg is called pure if there is a pure diffeomorphism F € f. If f
is a pure element of Mods and f"(a) = «a for a vertex o of C'(S) and some n # 0,
then f(a) = o; cf. [I3], Corollary 3.7 (we can apply it because our Condition P is
stronger than Condition (P) of [I3]). By Corollary 1.8 of [I3], there exists a subgroup
I of finite index in Modg consisting entirely of pure elements. In particular, for any
element f € Modgs some power ™, n # 0 of it is pure. Note also that all Dehn twists
(and all multitwists) are pure.
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2.3. Reduction systems. The action of Mody on V(S5) extends to a simplicial
action of Modg on C'(S). For the most of the paper, we are interested only in the
induced action of Modg on C'(S). For each simplex o of C'(.S), we denote the stabilizer
of o in Mods by M(o). A simplex o of C'(S) is a reduction system for f € Modg if
flo) =0, (i.e. f€ M(o)). If o is a reduction system for f € Mods and C is any
realization of o, then we may choose a diffeomorphism F' € f such that F(C') = C.
Any such diffeomorphism F' determines a diffeomorphism Fgo : Sc¢ — Sc¢ of the
surface S cut along C'. The isotopy class fo of F depends only upon f. Hence,
there is a natural reduction homomorphism r¢ : M(o) — Mods,, given by the rule:
rc(f) = fo. The kernel of r¢ is equal to Tt.

Let o be a simplex of C'(5), let C be a realization of o and R = S¢. The group
Modpg acts in an obvious way on the set of components of R. For a component ()
of R, we denote its stabilizer in Modg by Modg(Q) and the canonical restriction
homomorphism Modg(Q)) — Modg by mg. If G is a subgroup of M(o) and @Q is a
component of S¢, we put Gg = mg(rc(G) N Modg(Q)). Suppose that f € M(o) and
Jo € Modg(@Q). In this situation F(Q) = @ for any F € f such that F(C') = C. For
such an F', we denote the restriction of F¢: to () by Fp, and we denote by fo € Modg
the isotopy class of Fg, (i.e. fo = mg(fc)).

If F:5 — S is a pure diffeomorphism, f is its isotopy class and (' is a system of
circles on S such that (F, () satisfies Condition P, we say that C' is a pure reduction
system for For f. Let () be a component of S¢. If Fy is isotopic to a pseudo-Anosov
diffeomorphism of ), we say that ) is a pseudo-Anosov component of S¢ with respect
to F' or f. Otherwise, we say that @) is a trivial component of S¢ with respect to F
(or ).

A reduction system o for f € Modg is called pure if there exists a diffeomor-
phism F' € f and a realization C of ¢ such that (' is pure reduction system for F.
Tautologically, an element having a pure reduction system is pure.

A vertex a of C(S5) is called an essential reduction class for a pure element f if
(1) fla) = o (i) if i(e, B) # 0, then f(B) # 3. Clearly, if o and 3 are two essential
reduction classes, then i(a, 3) = 0. It follows that the set of all essential reduction
classes for f is a symplex and, hence, is a reduction system. We call it the canonical
reduction system for f and denote it o(f). Clearly, o(hfh™') = h(c(f)) for any
h € Mods. Also, it is easy to see that o(t”) = {a} for any o € V(S) and n # 0.

In view of 2.2, if ¢ i1s a reduction system for a pure element f, then each vertex of
o is fixed by f.

Finally, recall that for any element f € Modg some power f".n # 0 is pure
according to 2.2, and define the canonical reduction system of an arbitrary element f
of Modg as the canonical reduction system for some pure power of f. This definition
depends only upon f, and not upon the power involved (cf. [I3], Section 7.4).

Lemma 2.4. If f is a pure element, then the canonical reduction system o(f) for f
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is pure and is conlained in any other pure reduction system.

Proof. Let F be a pure diffeomorphism representing f and C' be a pure reduction
system for F'. After deleting some components from C we will get a minimal pure
reduction system C' for F, i.e. such a reduction system that we cannot discard any
component from C’ without violating the Condition P. In the terminology of [I3] this
is expressed by saying that €’ does not have superfluous components. And, according
o [I3], Section 7.19, o(f) is exactly the set of isotopy classes of components of C’.
Clearly, this implies both statements of the lemma. [

Corollary 2.5. If [ is a pure element, then o(f) is empty precisely when f is either
trivial or pseudo-Anosov.

Lemma 2.6. If 7 is a reduction system for a pure element f, then o(f)UT is a pure
reduction system for f.

Proof. 1t follows from the definition of essential reduction classes that i(o(f),7) = 0.
Hence, o(f) U 7 is a simplex of C(S) and is a reduction system for f. In order to
see that it is a pure reduction systems, let us choose a realization C' of o(f) and
a diffeomorphism F' € f as in the Condition P. We can choose a realization D of
o(f) U T containing C'. Clearly, any component of D is contained either in C' or
in a component ) of S¢ such that Fp is isotopic to the identity. This implies our
assertion. [

Theorem 2.7. Let [ be a pure element of Mods. Let o be a reduction system for f, C
be a realization of o, and F' € f such that F'(C) = C. Then F leaves each component
of C'UAS invariant, preserves their orientations, preserves the orientation of S, and
also leaves each component of S\ C invariant. In particular, if f(o) = o for some
simplex o, then f fires all vertices of o.

Theorem 2.8. Let [ be a pure element of Modg. Then f is either trivial or of
infinite order.

Theorem 2.9. Let [ be a pure element of Modgs, 7 be a reduction system for f and
C' be a realization of 7. Suppose thal Q) is a component of Sc. Then fc € Mods,.(Q)
and fg is a pure element of Modg.

Proof. Given Lemmas 2.4 and 2.6, these three theorems are immediate. []

Theorem 2.10. ([I3]) Let I' be a subgroup of Mods consisting of pure elements. If f
is a pseudo-Anosov element of ', then its centralizer in 1" is an infinite cyclic group
generated by a pseudo-Anosov element.

Proof. Cf. [13], Lemma 8.13. O
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Theorem 2.11. ([I3]) Let G be a subgroup of Mods consisting of pure elements.
Then G either contains a free group with two generators or is a free abelian group of
rank < 3g — 3 + b, where g is the genus of S and b is the number of components of
the boundary of S.

Proof. This is a minor variation on Theorem 8.9 of [I3]. The proof of Theorem 8.9
of [I3] appeals to several results which involve the hypothesis that certain subgroups
of Modg act trivially on Hy(S,Z/moZ) for some integer mo > 3. This hypothesis
can be replaced by the assumption that the relevant subgroups consist entirely of
pure elements. After making this change in hypothesis in the relevant results, the
following additional changes should be made. Appeals to Corollary 1.8 of [13] should
be eliminated, since we have now assumed the conclusion of Corollary 1.8. Appeals
to Theorem 1.2 of [I3] should be replaced by appeals to Theorem 2.7. Appeals
to Corollary 1.5 of [I3] should be replaced by appeals to Theorem 2.8. Appeals to
Lemma 1.6 of [I3] should be replaced by appeals to Theorem 2.9. With these changes
in the arguments of [I3], we prove the result. [

2.12. Reduction of subgroups. Let I' be a subgroup of Modg consisting of pure
elements. If C' is a system of circles on S and o is the corresponding simplex of C'(.5),
we put I'(C') = M(o)NT. If f € T'(C), then fo € Mods,(Q) in view of Theorem
2.9. Now, let GG be a subgroup of M (o) consisting entirely of pure elements. Then
G(C) = G and, hence, ro(G) C Modgs,.(Q) for every componet @) of Sc. It follows
that Gg = mg(rc(G)). Furthermore, by Theorem 2.9, G consists entirely of pure
elements of Modg, and by Theorem 2.8, (g is torsion free. Obviously, r¢(G) lies in
the product of the groups Gg over all components of Sc. (This product naturally lies
in Mods,.. Indeed, the intersection of the stabilizers Mods,.(Q) over all components
@ is naturally isomorphic to the product of the groups Modg over all components
@.) In the above setting, the homomorphism r¢ |G : G — Modg,. will be the main
tool for studying GG. Note that its kernel is equal to T N G.

2.13. Remark. While the hypothesis that G acts trivially on Hy(S,Z/moZ) assures
that all elements of G are pure, it is not preserved under reduction. In this paper, we
prefer to work with the weaker assumption that G consist entirely of pure elements,
which is preserved under reduction by Theorem 2.9. An example showing that the
triviality of the action on the homology is not preserved under reduction may be
constructed as follows.

Let S be a closed surface of genus 3. We may express S as the union of two disjoint
embedded tori with one hole, P, and P, joined by a torus with two holes (). Let
¢; = 0P;,1 = 1,2 and C = ¢; Uc¢y. Then C is a system of circles on S, S¢ consists
of three components, P;, P, and @, and dQ = C. Let a U b be a maximal system
of nonseparating circles on ). Since @) is a torus with two holes and a and b are
nonseparating circles on ), a U b separates () into two discs with two holes, (); and
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(Q),. We assume that these discs with two holes are labeled so that 9Q); = ¢; U a U b.
Then a U b separates .S into two tori with two holes, P, U )y and P, U Q5.

Each circle on S determines a homology class on .S which is well defined up to sign.
The previous properties imply that a and b determine the same homology class (up
to sign) on S. Fix an orientation of S and let F' = T, o Tb_l, where T, and T} are
right twist maps supported on neighborhoods of @ and b in ). The action of T, on
Hq(S) depends only upon the homology class of @ up to sign. This implies that F
acts trivially on Hq(S) and, hence, on Hy(S,Z/moZ).

Clearly, F(C) = C and Fg = T, o T;'. Orient a UbU ¢; as the boundary of
@1. Then a +b+ ¢ = 0 € Hi(Q). We may choose a circle d on @ such that
i(a,d) =1i(b,d) = 1. Let (,) denote the homological intersection form on H;(Q). We
may orient d so that (a,d) = 1. Since (¢;,d) = 0, the previous relations imply that
(b,d) = —1. By a well known formula for the action of a Dehn twist on homology,
To(d) =d+ {a,d)a = d+a € Hi(Q) and Ty(d) = d+ (b,d)b = d — b € H(Q).
Suppose that Fg acts trivially on Hqi(Q,Z/moZ). Then the relation d +a = d — b
must hold in Hy(Q,Z/meZ). This implies that a + b = 0 € H1(Q,Z/moZ). Since
@ retracts onto a UbU d, H1(Q,Z/m¢Z) is a free Z/m¢Z module on a, b and d.
Hence, the previous relation is impossible. This proves that Fy acts nontrivially on
homology.

In this example, the canonical reduction system for F' is realized by a U b, not by
C'. An example in which (' is a realization of the canonical reduction system for F'
can be obtained as follows. Since the action of T, on H;(.S) and H;(Q) depends only
upon the homology class of a (up to sign) on @, we may replace a by any circle on @)
homologous to @ on (). Hence, we may assume that a and b are in minimal position
and aU b fills @, (i.e. @\ (aUb) is a union of discs). By a well known construction
of pseudo-Anosov maps described in [FLP], this assumption implies that Fy is a
pseudo-Anosov map. It follows that C' is the canonical reduction system for F. The
previous discussion shows that F' acts trivially on H;(S,Z/moZ), but Fg does not
act trivially on Hi(Q,Z/moZ).

2.14. Remark. Throughout [I3] the condition that elements of some subgroup of
Mods act trivially on H(S,Z/mZ) for some mg > 3 was used. This condition im-
plies that these elements are pure and is the only known general condition implying
this. But, the fact that it is not preserved under reduction causes some difficulties,
as explained in Remark 2.13. These difficulties cannot be avoided completely, be-
cause they occur already in the proof of fact that the elements acting trivially on
H(S,Z/moZ) for some mgy > 3 are pure (and this result is needed to get a subgroup
of finite index consisiting of pure elements). In [I3], this problem is taken care of in
(the proof of) Lemma 1.6. But, at some other places in [I3], these difficulties led to
slightly incorrect arguments. A general way to correct them is to use the Theorems
2.7-2.11 proved above. But they can be also corrected by making only few small
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changes in [I3], as we explain now. All references below in this Remark are to [I3].

In the proof of Theorem 5.9 at the end of the first paragraph on the p.53, the
elements fi, ¢; are, indeed, pure, as it follows from the above, but the argument
given for this is incorrect. Instead of proving that they are pure, we can replace the
elements f, ¢ in the proof by their powers f¢, ¢°, such that the new f;, ¢; will be
contained in Ts,(mg) (if f, g are replaced by f*, ¢°, then fi, g1 are replaced by f2,
g% respectively).

The Corollary 7.18 is correct as stated, but a slightly different version of it is more
convenient for Section 8. (In Sections 9 and 10 it should be used as stated.) Namely,
I = pc(G) N I'r(mg) can be replaced by the new I" = pe(G N T's(myg)). The proof
goes almost unchanged. We only need to note that I' C Modg(@) by Theorem 1.2
and replace the appeal to Corollary 1.5 by the appeal to Lemma 1.6. (The group G’
disappears from the statement and the proof; alternatively, we may put G' =1".)

In Corollary 8.5 and in Lemma 5.10 used in its proof one can replace the condition
that the subgroup in question consisits of pure elements by the weaker condition that
the subgroup is torsion free. Only this weaker condition is actually used in the proofs.

In the first paragraph of the proof of Lemma 8.7 the new version of Corollary 7.18
should be used. After this, one should notice that each group rqo(I") is torsion free
by Lemma 1.6 and then apply the new version of Corollary 8.5. The rest of the proof
of Lemma 8.7 remains unchanged.

In the proof of Theorem 8.9 again the new version of Corollary 7.18 should be
used. Then, one should notice that the group rgo(I”) is torsion free by Lemma 1.6,
and, hence, it is an infinite cyclic group (generated by a pseudo-Anosov element) if
and only if it contains an infinite cyclic group as a subgroup of finite index, in view
of the new version of Corollary 8.5. Given this, one should refer to Corollary 7.15
instead of Theorem 5.12. The rest of the proof remains unchanged.

3. NONGEOMETRIC INJECTIVE HOMOMORPHISMS

Our purpose, in this section, is to give examples of injective homomorphisms p :
Mods — Modg between modular groups of compact connected orientable surfaces
S and S’ which are not induced by a diffeomorphism S — S’. The results of this
section are not used in the rest of the paper.

3.1. Doubling. A simple construction of such a homomorphism is provided by the
classical topological construction of doubling a surface. Let S be a compact connected
orientable surface with nonempty boundary and dS be the double of S. The double dS
is the union of two copies of S, S and —5, meeting along their common boundary 95.
The boundary 95 is a system of circles on d5 and the surface R obtained by cutting
dS along 0S5 is the disjoint union of two copies of S. Given any diffeomorphism
F 5 — S, we can form the double dF' : dS — dS of F, which is the unique
diffeomorphism dS — dS which preserves 05 and restricts to F on each of the two
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copies of S'in dS. Clearly, d(Fo(i) = dFodG. This doubling construction also applies
to isotopies on S. Hence, there is a doubling homomorphism 6 : Mods — Modgys
given by the rule §([F]) = [dF], where we denote by [H] the isotopy class of a
diffeomorphism H.

Let o be the simplex of C(dS) corresponding to the common boundary 95 of the
two copies of S in dS. Since dF(0S5) = 0S5 for every diffeomorphism F': S — S, this
simplex o is a reduction system for §(Mods). Hence, we may consider the composition
of § with the reduction homomorphism rss : M(o) — Mod(R). Since dF preserves
S, we may also compose with the restriction homomorphism mg : Modg(.S) — Mods.
Since dF restricts to F' on S, we conclude that mgrcd is equal to the identity on
Mods. Hence, § : Mods — Modgs is an injective homomorphism. Since S is not
diffeomorphic to dS, the homomorphism 4 is not induced by a diffeomorphism S —
ds.

This doubling construction can be modified as follows. Let C' be a submanifold
of 05 and d¢(S) be the double of S along C, which is, by definition, the union of
two copies of S meeting along C'. Let ¢ be the simplex of C(dg(5)) realized by C.
Recall that M(o) is the stabilizer of o in Mods. Modifying the previous discussion,
we obtain an injective homomorphism d¢ : M (o) — Modg/, where S = d¢(S). Since
doubling S along C' doubles the Euler characteristic of S, d¢ () is not diffeomorphic
to S, unless S is an annulus and C' is one component of dS. In this case, M(c) is
trivial and, hence, dc is induced by any diffeomorphism S — d¢(S). In all other
cases, ¢ 1is not induced by a diffeomorphism.

3.2. Lifting. A second construction is provided by lifting to characteristic covers.
Recall that a cover X~ — X is called characteristic if the image of the fundamental
group m1(X™) in m1(X) is a characteristic subgroup, i.e. a subgroup invariant under
all automorphisms of 71 (X). For this construction, we consider a compact connected
orientable surface S of genus g > 1 with one boundary component. Let R be the
closed surface of genus g obtained by attaching a disc D to the boundary of S. Choose
a point p in the interior of D. Let m : R — R be a characteristic cover of index
n > 2 and let p’ € 77'(p). Note that S is naturally embedded in R. Let 5" = 771(5).
The covering 7 restricts to a covering 7|S’ : S” — S of index n. The surface S’ is
a compact connected orientable surface of genus ¢’ = ng — n + 1 with n boundary
components.

Suppose that F': S — S is a diffeomorphism. We may extend F' to a diffeomor-
phism G : (R,p) — (R,p). Since 7 : R" — R is a characteristic cover, G lifts to a
unique diffeomorphism G’ : (R, p’) — (R',p’). Since G preserves S, the diffeomor-
phism G’ restricts to a lift F' : S" — S" of F. Since F' does not depend upon the
choice of extension (G of I, we have defined a unique lift ¥’ of F'. In the same way, we
may define a unique lift of any isotopy of S. Hence, we have a lifting homomorphism
A : Mods — Modg/. Suppose that F’:S" — S’ is isotopic to the identity map. Since
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F" is fiber-preserving with respect to m|S” : S — S, Theorem 1 of [BH] implies that F
is isotopic to the identity. Hence, A : Mods — Modg: is an injective homomorphism.
Since the Euler characteristic of S is multiplied by n under a covering of index n, S
is not diffeomorphic to S”. Hence, A is not induced by a diffeomorphism.

This lifting construction can be modified as follows. Let S be a compact connected
orientable surface S with at least one boundary component. Suppose that S is not
an annulus. Let ¢ be a component of 05, M(c) be the stabilizer in Modg of ¢
and R be the surface obtained by attaching a disc D to ¢. Choose a point p in
the interior of D. As before, let 7 : R’ — R be a characteristic cover of index
n>2p €rt(p)and S = 771(S). Modifying the previous discussion, we obtain
an injective homomorphism A. : M(¢) — Mods,. Again, an Euler characteristic
argument implies that S’ is not diffeomorphic to S. Hence, A. is not induced by a
diffeomorphism.

3.3. Hybrids. Asin 3.2, let S be a compact connected orientable surface S of genus
g > 1 with one boundary component. Let A : Mods — Modg: be constructed by the
lifting construction of 3.2. Since n > 2, S’ has at least two boundary components.
Hence, we may compose A : Mods — Modg with the doubling homomorphism
0 : Mods: — Modys to obtain an injective homomorphism v : Mods — Modys:.
Since S is not diffeomorphic to dS’, v is not induced by a diffeomorphism.

We may modify this two stage construction as follows. In our scheme for choosing
a lift F’: 5" — S’ of a diffeomorphism F' : S — 5, we have implicitly singled out a
special component ¢ of 95’. Let C be the complement of ¢in 95’. Let M(c¢) and M(C')
be the stabilizers in Modg of ¢ and C' respectively. The image of A : Mods — Modg:
is contained in the stabilizers M(c¢) and M(C'). Hence, we can compose A with either
of the doubling homomorphisms . or dc obtained by doubling S’ along ¢ or C' or
with a lifting homomorphism A, associated to a characteristic cover of the surface
obtained by attaching a disc to S” along ¢. Again, an Euler characteristic argument
shows that these composite homomorphisms are not induced by diffeomorphisms.

Since the images of these composite homomorphisms stabilize various proper sub-
manifolds, including particular components, of their respective target surfaces, these
doubling and lifting constructions can be iterated in a variety of ways. Again, an
Euler characteristic argument shows that these homomorphisms are not induced by
diffeomorphisms. If desired, at any stage of this iteration, we can double along the
entire boundary of the target surface, and terminate the process with an injective
homomorphism from Modgs into the modular group of a closed surface.

3.4. Tori. Let S be a torus with one hole. The surface R obtained by attaching a
disc D to 05, as in subsection 3.2, is a torus. It is well known that Modg is isomorphic
to SLy(Z). The natural homomorphism Mods — Modg is an isomorphism. Hence,
there is a natural correspondence between injective homomorphisms Mods — Modpg
and Modgs: — Modg for any surface R.
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Doubling S gives us an injective homomorphism p : Mods — Modg/, where 5" is a
closed surface of genus 2.

The characteristic covers R’ of R correspond to the subgroups m(Z?) of index
m? in the fundamental group Z? of the torus R. Hence, lifting gives us injective
homomorphisms p : Mods — Modg/, where S’ is a torus with m? holes. Iterating
the doubling process on S’, we obtain injective homomorphisms p : Mods — Modsn
where S” has Euler characteristic —2¥m?. If we have terminated the process by
doubling along an entire boundary, then S” is a closed surface of genus 2=1m? + 1.

Hence, we obtain injective homomorphisms p : Mods — Modg where S’ is any
closed surface of genus ¢, provided ¢’ = 2'm?+ 1 for some nonnegative integers [ and
m. If ¢’ is a number of this form with m positive and even, then there are at least
two solutions to the equation ¢’ = 2'm? 4+ 1. Hence, in this situation, we expect that
there are essentially distinct injective homomorphisms p : Mods — Modg:.

If we bring lifting into the iteration, we will broaden the range of target surfaces
for injective homomorphisms from Modgs. On the other hand, it is clear that the
doubling and lifting iteration scheme will not produce closed targets of arbitrary
genus. In particular, the Euler characteristics of all closed targets produced by this
iteration scheme (other than S, R and the closed surface of genus 2) are divisible by
a perfect square m? for some integer m > 1.

4. RELATIONS BETWEEN DEHN TWISTS

In this section, S denotes a compact oriented surface. Our purpose, in this section,
is to discuss basic relations between Dehn twists along circles on S. Recall that for
each isotopy class a € V/(S5), we denote by t, € Mods the right Dehn twist about
any circle a € a. Thus, ¢! is the left Dehn twist about a. It is well known that
Stoaf ™" =1y for any [ € Modg, o € V(S). Also, if f € Modg\ Modg (i.e., if f is
orientation-reversing), then ft,f~' = (o) for any a € V(5).

For each a € V(S), {, is a pure, reducible element of infinite order in Mods.
Moreover, « is the canonical reduction system for ¢, and its powers. These facts
imply the following well-known result.

Theorem 4.1. Let iy, 15 be two right twists. Lel j,k be two nonzero integers. Then
i, :tg if and only if a = 3 and j = k.

Theorem 4.2. Lel t,,15 be distincl right twists. Lel j,k be lwo nonzero inlegers.
Then:

(i) tﬁxti‘% = the?, if and only if i(a, 3) = 0,

(ii) tt5t], = thiith if and only if j = k = £1 and i(a,3) = 1.
Proof. This theorem generalizes Theorem 3.1 of [I12] and Lemma 4.3 of [M].

The “if” clause of (i) is trivial and the “if” clause of (ii) is well known and easy to

check.
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We shall deduce the “only if” clause of both assertions from the following special
case of Proposition 1 from Exposé 4, Appendice of [FLP]:

(4.1) i(t5(8), 8) = jl(i(e, B))%.

Our proof follows that of Lemma 4.3 of [M]. .
Suppose that titg = tfati- This implies that titfgt;f = t’g. Equivalently, tf&(ﬁ) = tfa-
By Theorem 4.1, we conclude that ¢/ (3) = 8. Hence, by equation (4.1):

(4.2) 0=1i(3,5) = i(ti(B), 3) = |jl(i(e, §))*.

Since j is nonzero, we conclude that (e, 3) = 0.

Suppose that tétlgti ='t§tét§. Suppose that i(a,ﬂ) = 0. Then ¢/t = tft7. From
the relation tJt5t], = t5i3 15, we conclude that ], = 5. Since o and 8 are distinct,
this contradicts Theorem 4.1. Hence, i(a, 3) #0.

Let f = tfxtg. Then fti f~1 = tg. Equiyalently, t?c(a) = tg. By Theorem 4.1, we
conclude that f(a) = and j = k. Thus tﬁxtg(a) = (3. Hence:

(4.3) i(tL(B),8) = i(th(B), thts(@)) = i(B,t5(e)) = i(15"8,e) = i(B,q).

By equation (4.1), i(13(8), 8) = |jl(i(a, ). Thus [jl(i(a,))? = i(a, B). Since
i(a, ) # 0, we conclude that |j| = i(a,3) = 1. Since we already know that j = k,
this completes the proof. [

Theorem 4.3. Let a and b be two circles on S intersecting transversely at one point,
and let U be a neigborhood of a Ub diffeomorphic to a torus with one hole. Let ¢ be
the boundary circle of U. Then

(talp)® = t..

Moreover, if T,, Ty and T, are twist maps representing t,, t, and t. respectively and
supported in U, then (T, o Ty)® is isotopic to T, by an isotopy supported in U.

Proof. This is well known and is essentially due to Dehn [D]. In order to give the
due to this pioneer paper of Dehn, we indicate how to deduce this result from [D].
In §4 a) Dehn introduces two elements A,, A;, which correspond to t,,1; "' re-
spectively in our notations. In §5 ¢) he introduces elements ¥ = A,A;"' and
T = A7'AyA; and in §6 c) he proves that ¥*7? = 1 and that T* is equal to
t=" in our notation. (Dehn works on the torus with one hole, which is, clearly, suf-
ficient. He proves the relation 7% = 1 first in §5 d) in the situation when the
boundary is allowed to be moved during the isotopies and then notices in §6 c) that
the proof works for the fixed boundary also.) Now, in our notations, ¥ = ¢, and
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T = ;%" Hence, (t415)% = 38 = (332 = (T7%)2 = 7= = (TY™! = .. The
theorem follows.

Note that the relation ¥*7% = 1 or, what is the same, ¥* = T2 means in our
notations that ¢,tpt,tpt .ty = t,tpt,latst, and thus is equivalent to the relation tpt,t;, =
tatpl,. O

5. PERIPHERAL TWISTS

In this section, S denotes a compact oriented surface. For a circle a on S we
denote by T, a standard twist map supported on a neighborhood of a in 5. So, T,
represents t, € Modg. If a is a trivial circle on S, then ¢, is the trivial element of
Modg and so T, represents the trivial element. Nevertheless, twist maps supported
on neighborhoods of boundary components of S play a role in the arguments of this
paper. In this section, we develop a relationship between these peripheral twists and
twists along nontrivial circles on S.

Let M denote the group of orientation preserving diffeomorphisms S — S which
fix 0S5 pointwise modulo isotopies which fix 95 pointwise. Let a be a nontrivial
circle on S or a component of 3S. Let i, denote the (isotopy) class of T, in Ms.
Naturally, we call it the Dehn twist about a in M. There is a natural homomorphism
Ms — PMods. This homomorphism is surjective and its kernel is equal to the group
Tys generated by the Dehn twists 7, about the components a of 3S. These Dehn
twists freely generate Tss. Thus, Tss is a free abelian group of rank b. The natural
homomorphism Mg — PModg maps 1, to t,.

Theorem 5.1. Let S be a compact connected orientable surface. Suppose that C is
a collection of nonseparating circles on S such that PModg is generated by the Dehn
twists t. along the circles ¢ of C. Then Mg is generated by the Dehn twists 1. along
the circles ¢ of C and Tys. Moreover, Ty is a central subgroup of Ms.

Proof. Let G be the subgroup of M generated by the Dehn twists £, along the circles
c of C. Since the natural homomorphism M5 — PMods sends {. to t. and has kernel
ng, M is generated by G and Tys. Clearly, Tys is central in M. This completes
the proof. O

5.2. Lantern relation. Let us recall the well known “lantern” relation discovered
by M. Dehn [D] (cf. [D] §7 g) 1)) and rediscovered and popularized by Johnson [J].
Let Sy be a sphere with four holes. Label the boundary components of Sy by C, .., C3
and write 7} for a standard twist map supported on a neighborhood of C; in Sy. For
1 <1 <3 <3, let C;; denote a circle encircling C; and C; as in Figure 5.1. Let
T;; denote a standard twist map supported on a neighborhood of C;; in S;. Then
Too Ty oTyo0Ts is isotopic to Ty 0 Tz 0 Ths by an isotopy which is fixed on 9.Sj.
Suppose that Sy is embedded in S. Diffeomorphisms 7; and 7;; may be extended
by the identity to all of S. In this sense, we may regard T; and T;; as standard twist
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Figure 5.1

Figure 5.2
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maps on S supported on neighborhoods of circles C; and ;. Let {; € Mg denote the
Dehn twist foi and {ij € Mg denote the Dehn twist tNCU. Any isotopy on Sy which is
fixed on 05y, extends by the identity to all of S. Hence, the above discussion provides
a relation in Mg:

(5.1) lol1tals = T1al15l0s.

Theorem 5.3. Let S be a compact connected orientable surface of genus g > 2. Let
C be a collection of nonseparating circles on S such that PModgs is generated by the
Dehn twists 1, along the circles ¢ of C. Then Mg is generaled by the Dehn twists i,
along the circles ¢ of C. Moreover, Tys is contained in the commutator subgroup of

Ms.

Proof. Let G be the subgroup of Mg generated by the Dehn twists £, along the circles
¢ of C. By Theorem 5.1, Mg is generated by G and Tas It suffices to show that
i, € G for each component a of 5. Note that, since Ths is central in Mg, G is a
normal subgroup of Mg.

Let a be a component of 95. Since g > 2, we may embed Sy in S so that: (i)
Co = a; (ii) C; is nonseparating on S for 1 < ¢ < 3; (iii) Cj; is nonseparating on S
for 1 < i < j < 3; cf. Figure 5.2. Let i; denote the Dehn twist along C; in Mg
and t~2-j denote the Dehn twist along C;; in Mg. Since C; for 1 <7 < 3 and all C;;
are nonseparating, {; for 1 <7 < 3 and all t~2~j are conjugate in Mg to {1. Hence,
equation 5.1 implies that Iy is equal to 0 in Hy(Ms) and, hence, t~0~is contained in
the commutator subgroup of Mg. Since lo = t~a, this implies that Tss is contained
in the commutator subgroup of M.

Since G and Ty _generate M, we may choose an element g, € G and an element
i € Tys such that 1, = 1t. Since G is a normal subgroup of Mg and { is a central
element of Mg, we conclude that there exists elements g; and g;; of G such that:

(5.2) li=gi for 1<i<3; Iy =gl
(recall that {;for 1 <i < 3andall tNZ-j are conjugate to t~1) Since ¢ is a central element
of Mg, equations (5.1) and (5.2) imply that:
(5.3) log13293 = G1213G23-
Since g; and g;; are elements of (i, equation (5.3) implies that 4, € G. Since Iy = 1,,
this completes the proof. [

6. CENTERS OF MODULAR GROUPS

In this section, S is a compact connected orientable surface. Our goal is to describe
the centralizers of PModgs in Modg. The main results are summarized in Theorem

6.3.
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Lemma 6.1. The centralizer Cyioas(PMods) of PMods in Mods is equal to the ker-
nel of the action of Modg on V(S). If S has positive genus, then Cyoas(PModg) is
equal to the kernel of the action of Mods on V4(S).

Proof. Let f € Mods and o € V/(S). Then ft,f™" = ty(,), where t, is the (right)
Dehn twist about a. On the other hand, 5 = 1, if and only if o = 3, by Theorem
4.1. Hence f commutes with ¢, if and only if f(a) = a. Since PModg is generated
by the Dehn twists about nontrivial circles, this proves the first assertion. If S has
positive genus, then PModgs is generated by the Dehn twists about nonseparating
circles; cf. 2.1. This proves the second assertion. [J

Lemma 6.2. The centralizer Cyioas(PMods) of PModg in Mods is a finite subgroup
of Modg. It contains the centers C(Modg) and C(PMods) of Modg and PMods and

s normal in Modg.

Proof. Clearly, Cyoa,(PModg) contains C'(Modg) and C'(PModg). Since PModg is
obviously normal in Modg, the centralizer Cyoas(PMods) is also normal. So, it
remains to prove the first assertion.

If S is a sphere or a disc, then PMods = Mods = {1}. If S is an annulus, then
PMods = 1, Mods = Z/2Z. Hence, if S is a sphere, a disc or an annulus, the first
assertion is also clear.

If S is a torus or a torus with one hole, then PMods = Mods = SLy(Z). The
center of SLy(Z) is well known to be equal to {—1, I}, where [ is the 2 x 2 identity
matrix. Hence, the first assertion is proved in this case also.

It remains to consider the case of a surface S of negative Euler characteristic.

Let C' be a maximal system of circles on S, o be the simplex of C'(S) corresponding
to C and R = S¢. By Lemma 6.1, Cvodas(PMods) C M(o). Hence, the reduction
homomorphism r¢ (cf. 2.3) gives rise to a homomorphism r¢ : Cyods (PMods) —
Modg. The kernel of ry is equal to T N Cyods(PMods). Suppose that f is a
nontrivial element of the kernel of r,. Such a element f is a nontrivial product of
Dehn twists about certain components of C'. Let a € V(S) be the isotopy class of
any one of these components of C'. We may choose 5 € V(5) such that i(«,3) # 0
and i(v,8) = 0 for each vertex v of o other than a. Proposition 1 from [FLP],
Expose [4], Appendice, implies that i(f(3),3) # 0. Hence, f(3) # (. Since f €
CMods(PModg), this is impossible by Lemma 6.1. Hence, the kernel of r{; is trivial
and ¢ @ Cumods(PMods) — Modpg is injective. Since each component of R is a disc
with two holes, an element of Modp is determined by its action on the components
of OR. Thus, Cyioas(PMods) is a finite group. This completes the proof. [

Theorem 6.3.
(i) If S is an annulus, then C(PMods) = PModg = {1} and Cyeas(PMods) =
C(Modg) = Modgs = Z/27Z.
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(i) If S is a disc with two holes, then C(PModg) = C(Modg) = PModg = {1} and
CMOdS(PMOds) = MOdS.

(iii) If S is a torus with at most one hole or a closed surface of genus 2, then
CMOdS(PMOds) = C(PMOds) = C(Mods) = Z/QZ

(iv) If S is a sphere with four holes, then C'(PMods) = C(Mods) = {1} and
Cwods(PMods) = Z /27 & 7./ 27Z.

(V)If S is a torus with two holes, then C(PMods) = {1} and Cyoas(PMods) =
C(Mods) X Z/2Z.

(vi) Otherwise, Cyiodas(PMods) = C'(PMods) = C(Mods) = {1}.

Proof. (i) is trivial.

(ii) If S is a disc with two holes then PModg is a trivial subgroup of Mods. Hence,
C(PModsg) is trivial and Cnoeds(PModg) = Mods. In addition, Modg is isomorphic
to the group of permutations of the three components of 3S. It follows that C'(Mods)
is trivial. This proves (ii).

(iii) If S is a torus with at most one hole, then Modg is isomorphic to SLy(Z).
The center of SLy(Z) is equal to {—1, I}, where [ is the 2 x 2 identity matrix. Thus,
C'(Modg) is isomorphic to Z/2Z. Since S has at most one boundary component,
PMods = Modg. It follows that Cyeas(PMods) = C'(PMods) = C(Modg). This
proves the result for a torus with at most one hole.

If S is a closed surface of genus 2, then, since S has no boundary, PMods = Mods.
Hence, Cyods(PMods) = C(PMods) = C'(Modg). It is a standard fact that C'(Modg)
is isomorphic to Z/2Z; cf. [M].

This proves the result for a closed surface of genus 2. For the proof of (iv) and
(v), we need a detailed description of the generator of C'(Mods,) for a closed surface
Sy of genus 2, which we will give now. This generator is known as the hyperelliptic
involution of S;. We will denote it by 2. For some hyperbolic metric on Sy there is
an isometry F': Sy — Sy of order 2 in the isotopy class ¢. (This isometry is, in fact,
unique and exists for any hyperbolic metric on S;, but we don’t need these facts.)
Let C' be a system of three nonseparating circles on Sy, dividing 53 into two discs
with two holes, which we denote by P and ). We may assume that the components
of C are geodesic. By Lemma 6.1, i(a) = o for all @ € V/(5;). Since there is a unique
geodesic in each isotopy class a € V(Sz), we conclude that F' preserves each geodesic
circle on S3. In particular, F' preserves three components a,b, ¢ of C'. Moreover, F
interchanges P and @ (otherwise, 7 is a composition of Dehn twists about a, b and ¢
and cannot be of order 2).

(iv) First, we will use the involution I of Sy from the proof of (iii) in order to
construct a nontrivial element of Cyoas(PMods). Let us cut Sy along two circles
a and b introduced above. We will get a surface S diffeomorphic to a sphere with
four holes. Since F'is an isometry preserving a and b, it induces an isometry Fj
of S. Any vertex § € V(S5) is represented by a unique geodesic d on S. Such a
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geodesic d is simultaneously a geodesic on Sy and, hence, F(d) = d. This implies
that F,us(d) = d. Thus, the isotopy class f,up of F,up is in the kernel of the action
of Modg on V(S). By Lemma 6.1 this implies that f,u € Cyoas(PMods). The fact
that F" interchanges discs with two holes P and () introduced above implies that F,u
induces a nontrivial permutation of components of dS. Thus, f,us is a nontrivial
element of the centralizer Cyioa,(PModg).

Next, we prove that an element of Cyod,(PMods) (where S is a sphere with four
holes) is determined by its action on the components of d5. Clearly, it is suffi-
cient to prove that the intersection Cyiodas(PModgs) N PModg is trivial. But, clearly,
CMods(PModg) N PMods = C'(PModg) and, hence, it is sufficient to prove that the
center C'(PModg) is trivial. Let f € C(PModg). Let C' be a nontrivial (separating)
circle on S and let R = S¢. By Lemma 6.1, f preserves the isotopy class of C' and,
hence, we can speak about fo € Modg. The surface R consisits of two components,
which we will denote by P and (). Each of them is a disc with two holes. Since f
preserves all boundary components of 5, the element f- preserves both P and () and,
moreover, all boundary components of both P and @ (because two of three boundary
components of, say, P are contained in 05 and, hence, are preserved by f). Since
both P and () are discs with two holes, this implies that fo is equal to the trivial
element of Modg. In other words, f is in the kernel Ty of ro. Since Ty is a free
abelian group and f is of finite order by Lemma 6.2, we conclude that f is trivial.
This proves that the center C'(PModg) is, indeed, trivial.

Now, suppose that f is a nontrivial element of Cyoa,(PModg). Then there exists
a pair of distinct components a and b of 95 such that f(a) = b. Let ¢ and d be
the remaining two components of 5. Choose a nontrivial circle £ on S separating
a and ¢ from b and d. The circle E separates S into two components which we
again denote by P and (. Since f(a) = b, f must interchange P and Q. Hence,
f(¢) = d. Hence, the action of f on the components of 95 is determined by its
action on just one of them (say, a) and there are at most three nontrivial elements of
CMods(PModg). These possible elements correspond to the permutations (a,b)(c, d),
(a,c)(b,d) and (a,d)(b,c) of the set {a,b,c,d}. Together with the trivial element,
these permutations form a subgroup of the group of permutations ¥4 of {a,b, ¢, d}
isomorphic to Z /27 x 7 /27Z. Nontrivial elements of this subgroup form a complete
conjugacy class in ¥4. By the previous arguments, Cyoas(PMods) is nontrivial.
Hence, at least one of the above permutations is realized. By conjugating with
elements of Modg, we can realize the other two permutations. Hence, Cyioas(PMods)

is isomorphic to Z /27 x 7 /27.

This completes our computation of Cyeda.(PMods) for sphere with four holes. We
already saw that C'(PMods) = {1}. Since the center of the group of permutations
of four components of 05 (isomorphic to ¥4) is trivial, C'(Mods) C PModg. Thus,
C(Modg) C C(PMods) and C'(Modg) is trivial. This completes the proof of (iv).
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(v) The proof for the torus with two holes is similar to the proof for the sphere
with four holes, but simpler. Again, we first construct a nontrivial element of
CMods(PModg). This is done by cutting S, and F along just one of the circles a, b and
¢ introduced in the proof of (iii). Next, we prove that an element of Cyioas(PMods)
(where S is a torus with two holes) is determined by its action on the components
of 0S. Again, it is sufficient to prove that the center C(PModg) is trivial. Let C' be
a system of two circles on S separating S into two discs with two holes P and ().
Any element of C'(PModgs) must preserve both components of 95 and, by Lemma
6.1, both components of C. Hence, by the same argument as in the proof of (iv),
C'(PModg) is trivial. Now, an element of Cyoas(PModg) is determined by its ac-
tion on two components of dS and there is at least one nontrivial element of this
centralizer. It follows that Cyea.(PMods) = Z /27Z.

It remains to prove that C'(Mods) = Z/2Z. Let f be the nontrivial element of
CMods(PModg) (constructed above). Since f permutes two components of 95, any
element ¢ € Modg can be written in the form ¢ = fg,, where ¢, € PModg. Since f
commutes with itself and with gy, it commutes also with g. Hence C'(Modgs) contains
f and so is of order at least two. Finally, the fact that C'(Mods) C Cyods(PMods)
implies that C'(Mods) = Z/27Z. This completes the proof of (v).

(vi) Now we suppose that S is not a sphere with at most four holes, a torus with
at most two holes or a closed surface of genus two. Let C' be a maximal system of
circles on S and let R = S¢, as in the proof of Lemma 6.2. Each component of R
is a disc with two holes. Since S i1s not a torus with one hole, we may assume that
each component of R is embedded in S. Let f € Cyodas(PModgs). In view of Lemma
6.1 [ preserves isotopy classes of all components of C'. In particular, fo is defined.
Suppose there is a pair of distinct components a and b of JR such that fo(a) = b.
Let P be the component of R containing a.

Suppose first that a corresponds to a component ¢ of €. Since f preserves the
isotopy class of ¢, the component b also corresponds to ¢. Since P is embedded in
S, at most one component of P corresponds to ¢. Furthermore, there are exactly
two components of R meeting along ¢. We denote them by P and ). Hence, f¢
must interchange P and ). Since f preserves each component of €', surfaces P and
() must meet along those components of dP which correspond to components of C.
All the other components of 9P and d() are components of d5. These considerations
imply that S is the union of P and (). (Note that P U @ is a submanifold of S such
that (P UQ) C 0S.) Since S is not a sphere with four holes, a torus with two
holes or a closed surface of genus two, this is impossible. Hence, a cannot correspond
to a component of C'. Note that the same argument implies that fo preserves each
component of R.

Suppose now that a is a component of 5. Then b = fc(a) is also a component

of S. After changing, if necessary, C', we can assume that a and b lie in distinct
components P and @) of R (since a # b). Clearly, fc(a) = b implies fo(P) = (). But,
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as we saw above, fc preserves each component of R.

We see that fc preserves all components of R. This implies that fo = 1 (because
all components of R are discs with two holes). As before, Lemma 6.2 and the fact
that T¢ is free abelian imply that f = 1. Hence, Cyoas(PMods) = {1}. Since
C'(Modg), C(PMods) C Cyods(PMods), this completes the proof of (vi). O

7. A CONFIGURATION OF CIRCLES

In this Section we introduce a special configuration of circles, which will play
an important role in the Sections 8 and 13. The most important property of this
configuration is the fact that Dehn twists about the circles (of a subconfiguration) of
this configuration generate the pure modular group PModg. Cf. Theorem 7.3.

7.1. The configuration C. Let S be a compact orientable surface of positive genus
which is not a (closed) torus. Let g be the genus of S and b the number of boundary
components. We are interested in the configuration of cirles C presented on Figure
7.1. The configuration C is in minimal position and the intersection number i(a, b)
is 0 or 1 for each pair of circles a, b in C. The circles ay,as, ... ,as, form a chain in
the sense that i(a;,a;41) = 1 for 1 <7 < 2g — 1 and all other intersection numbers
i(a;,ay) are equal to 0. For any circle ay; with ¢ > 2 there are two circles by; and ¢y
having the intersection number 1 with it and not belonging to the above chain. And
for the last circle ay, of the chain, there are additional b — 1 circles dy,ds, ... ,dy—y
having the intersection number 1 with it. All unmentioned intersection numbers are
0.

Note that if the genus ¢ = 1, then there are no circles by; and ¢y; for 1 < < g, if,
b =1, then there are no circles d;, and if b = 0, there are no circles by, and cy,.

The even-numbered circles ay, aq,. .. ,as, of the above chain are called the dual
circles of C. They form a system of circles which we will denote by C'. If we remove
C' from C, we obtain a collection of disjoint circles. We denote the corresponding
system of circles by C'. Clearly, C' is a maximal system of circles.

Clearly, all components of S¢ are discs with two holes. Moreover, all components
of S¢ are embedded in S, with only one exception of the case ¢ = b = 1. For
each component P of S¢ the complement S\ P is connected. Moreover, either 9P
consists of three components of of C' or P consisits of two components of C' and one
component of 5. In the first case P is a system of circles on 5. Recall that we call
P an interior component in the first case and a peripheral component in the second
(cf. 2.1). If there is an interior component, then the genus of S is at least 2.

Lemma 7.2. Let S be a compact orientable surface of positive genus which is not a
closed torus. Let S’ be some other compact orientable surface. If S is a closed surface
of genus 2, let us assume that S’ is also a closed surface of genus 2.
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Figure 7.1
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Let x — ' be an injective map from the set of circles of the configuration C to the
set of nontrivial circles on S’. Suppose that the configuration of circles C' formed by
these circles x' is in minimal position and:

() i(z,y) = i(2', ) for all 2, y in C;

(i1) if three distinct circles x,y,z of C bound a disc with two holes in S, then the
circles &', y', 2" bound a disc with two holes in S'.

Then there exist an embedding H : S — S such that the image H(S) contains all
circles x'.

Suppose thal, in addition, S’ is diffeomorphic to S and:

(iil) if =, y are adjacent cirles of the system of circles C, then 2, y' are adjacent
circles of the corresponding system of cirles C'.

Then there exist a diffeomorphism H : S — S" such that H(xz) = 2’ for any circle
z inC.

Proof. Let us consider the case of a torus with one hole first. In this case there are
only two circles, a; and ay, in C. Since i(a},ay) = i(a1,az) = 1 and the circles af, af
are in minimal position (i.e., in this case, are transversely intersecting at exactly one
point), there is a neighborhood N’ of a} U a}, diffeomorphic to a torus with one hole,
i.e. to S. Moreover, if S” is a torus with one hole also, we can choose N’ to be equal
to S” and find a diffeomorphism H : S — S’ such that H(ay) = a}, H(as) = a}. This
proves the Lemma for a torus with one hole.

Next, let us consider the case of a torus with two holes. In this case there are only
three circles, aq,as, as, in C. Since d}, @}, ay are in minimal position, the assumption
(i) implies the a}, intersects both @} and af transversely in exactly one point and the
circles a} and a} are disjoint. The existence of the required embedding or diffeomor-
phism in this situation is well known. Compare [I12], Lemma 5.1, or [M], Lemma
4.9.

In the remaining part of the proof we assume that S is not a torus with at most
two holes. Note that in this case all components of S¢ are embedded. We prove now
a slightly strenghtened form of the first assertion. Namely, we prove that there exists
an embedding H : S — S’ such that:

(a) H(xz) = 2’ for circles z of the system of circles C' with the exception of circles
di,1<i<b—1;

(b) H(d;) = dy(y for all : =1,2,... ,b—1 and some permutation o : {1,2,... ,b—
1V (1,2, b— 1}

(c) the image H(S) contains the circles aj,;, 1 <7 < g.

Again, there is a special case. Let .S be a closed surface of genus 2. In this case
the system of curves C' consists of only three circles, ay, as, as, and they divide S into
two discs with two holes, which we denote by P and Q. By (ii), the circles af, a}, af
bound a disc with two holes P’ in S’. Since S’ is assumed to be a closed surface of
genus 2 in this case, the complement Q' = S\ int P’ is also a disc with two holes.



INJECTIVE HOMOMORPHISMS BETWEEN MODULAR GROUPS 29

Now, it is clear that there exists a diffeomorphism H : S — S’ taking P to P’, Q) to
@’ and a; to a} for 1 = 1,3,5. Since there are no circles b;, ¢; or dj in this case, this
proves our assertion (including the first assertion of the Lemma).

Suppose now that S is not a closed surface of genus 2 (and not a torus with at
most two holes). If P is an interior component of S¢ and z,y,z are the circles of
C' corresponding to the components of P, then, by (ii), 2’,y’, 2/ bound a disc with
two holes in S’. Let us prove that they bound only one such disc. Otherwise, S is
equal to the union of two discs with two holes bounded by z’,y’, 2’ and, hence, is a
closed surface of genus 2. Since a system of circles on a closed surface of genus 2
contains no more than three circles, this implies that C’ contains only z’,4’, 2’ and,
hence, C' contains only z,y,z (by the injectivity assumption). But, if S is not a
closed surface of genus 2 and there is an interior component of S¢, the system of
circles C' contains at least four circles, namely aq, as, by, ¢4. The contradiction shows
that z’,y’, 2/ bound only one disc with two holes, which we will denote by P’ (if P
is the disc with two holes bounded by z,y, z). The correspondence P +— P’ is 1-1,
because different interior components have different sets of boundary circles.

Let us orient S and S’. For any interior component P, let us choose an orientation-
preserving diffeomorphism P — P’ respecting the correspondence z +— 2’ (i.e. such
that if a component of P corresponds to x, then its image corresponds to ).
For any circle  from C different from by, ¢34, d1, ds, ... ,dy—1, these diffeomorphisms
induce two diffeomorphisms x — 2/, coming from two sides of x. In fact, these
two diffeomorphisms are always isotopic. This is because diffeomorphisms P — P’
are orientation-preserving and two diffeomorphisms between two (oriented) circles
are 1sotopic if and only if they are both orientation-preserving or both orientation-
reversing. It follows that, after changing some of the diffeomorphisms P — P’ by
an isotopy, we may assume that diffeomorphisms * — 2’ coming from two sides
of x are always equal. Then we can glue these diffeomorphism P — P’ into a
diffeomorphism Hy : So — S, where Sy (respectively, S3) is the result of glueing of
all interior components P (respectively, of the corresponding components P’). If 95
is nonempty, then Sy is a surface of genus g — 1 bounded by by, and ¢y, and S5 is a
surface of genus g—1 bounded by &}, and ¢, . If S is closed, then S = Sy and 5" = Sj.
In particular, if S is closed, we can take the diffeomorphism Hj as the embedding H
we are looking for now.

The next step is to extend the diffeomorphism Sy — S| to the (image in S of
the) peripheral components. Note that the intersection Sy N ag, is an interval in
agq. Let Iy, be the complementary closed interval in ay,. The circles dy, ds, ..., dy—1
intersect ag, in Iy,. Let us consider what happens with the corresponding circles on
S'. Since ay, intersects both b}, and ¢;, in exacly one point, the intersection S’ M aj,
is an interval in a5,. Let I3, be the complementary closed interval in aj,. Note that
the circles d,dy,... ,d,_, cannot intersect ay, in S’ May,. In fact, if d} intersects
aj, in S M dy,, then d} is contained in Sj, disjoint from S5 N ' and is not isotopic
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to any component of S; N C'. But this is impossible because, by the construction,
SeNC divides S into several discs with two holes. Hence, the circles d},d5, ... d;_,
intersect aj, in I, each exactly at one point. But they do not necessary follow
in the order d,d;,... ,d,_, along I;,. The new order gives rise to a permutation
o:{1,2,....b—1} — {1,2,...,b — 1} such that the circles follow in the order
by, d;_l(l), dg_l(Q), e ,df,_l(b_l), cy, along I;,. Now, by a standard argument, we can
find a diffcomorphism H; : N — N’ between a regular neighborhood N in S of the
union So U Iy, U dy Udy U...Udy_; and a regular neighborhood N’ in S of the
union Sy U I, Udy UdyU...Ud,_;. Compare [I2], Lemma 5.1, or [M], Lemma 4.9
again. Moreover, we can choose H; to be equal to Hy on So, mapping Iy, to I, and
d; to dyiy for 1 <4 < b—1. And, since S is a regular neighborhood of the union
SoU I Udy Udy U ... Udp_q, we can take S as N. Then, composing H; with the
inclusion N — 5’, we will get an embedding H. Clearly, H has the properties (a)
and (b). Also, it follows from (i) that the circles a};, 1 <1 < g — 1 are contained
in S§. Since aj, C N’, the property (c) follows. This completes the proof of our
strenghtened form of the first assertion.

Let us prove now the second assertion of the Lemma. We prove first that (if S’ is
diffeomorphic to S, then) H has the following property:

(a-b) H(x) = a' for all circles z of the system of circles C'.

Note that since both circles b;, and ¢}, are nonseparating (they intersect ay, trans-
versely in exactly one point), the union b}, Uc), divides S" into eaxctly two parts, one
of which is, obviously, S}. Let S7 = 5"\ int S} be the other part. It follows from the
classification of surfaces that S} is a sphere with b 4 2 holes. Because the maximal
number of circles in a system of circles on a sphere with b+ 2 holes 1s b— 1, the circles
dy,dy, ..., d,_, form a maximal system of circles on S{. In particular, d},d5, ... ,d;_,
divide 57 into b discs with two holes, which we denote by P/, Py, ..., P;.

For each P!, no more than one component of the boundary corresponds to a com-
ponent of dS’. In fact, if all three components of 9P/ correspond to components of
of 05, then P! has to be a connected component of S, and if exactly two components
of P! correspond to components of 95, then the third component corrresponds to
a separating circle on S, contradicting the fact all circles b, dy,dy,... ,dy_,,c5, are
nonsepaprating. Since there are b boundary components of S” and b surfaces P!, we
see that exactly one boundary component of each P/ corresponds to a component of
a5'.

Consider two consequtive circles z,y from the sequence byy, dy,ds, ..., dy_1,coy.
Clearly, z and y are adjacent circles of the system of circles C'. By (iii), 2" and y’ are
adjacent circles of C’. Since at least one of the circles a’,y’ is not contained in S{,
this means that for some P both 2’ and y’ correspond to boundary components of
P!. The third boundary component of P/ corresponds to some boundary component
of 5. Now, let us look at the intersection of a}, with the image of P/ in S'. It

K3
is a one-dimensional manifold with boundary and without closed components. The



INJECTIVE HOMOMORPHISMS BETWEEN MODULAR GROUPS 31

boundary is contained in 2’ Uy’ and, hence, consists of two points. It follows that
this intersection is an arc connecting x’ with y'. Hence, y follows z’ along dj,. Since
this is true for any consequtive x,y, we see that the above permutation o is, in fact,
trivial in the our case. In other words, H has the property (a-b).

Notice that each peripheral componet P; of S¢ is embedded by H into some P;.
Since this embedding induces a diffeomorphism on two boundary components of F;
(the ones coming from '), we can modify H in such a way that all these embeddings
will be diffeomorphisms. Then the embedding H itself will be a diffeomorphism.

It remains to consider the dual circles ag,a4,... a9, If z is one of them, then
H(z) and 2’ intersect the same circles of C” and all these intersections are transverse
and one-point. Since S¢, is a union of discs with two holes, the well known Dehn-
Thurston classification of multi-circles implies that, up to an isotopy preserving C’,
the collections of circles { H(z) : x is a dual circle } and {z' : z is a dual circle } differ
by a composition of twist maps about components of C’. Hence, by composing H with
such a composition and then applying some isotopy, we will get a new diffeomorphism
H, which will satisfy (iii). This proves the second assertion of the Lemma. O

Theorem 7.3. PModgs is generated by the Dehn twists along the circles of the con-
figuration C.

Proof. We use the induction by the number of holes. If there is no holes (i.e., b = 0),
then our set of Dehn twists contains the well known set of Lickorish generators and,
hence, the Theorem is true in this case.

Suppose now that b > 0. Let R be the surface obtained from S by glueing a
disc D to some boundary component of S, say, to the one situated between by, and
dy. Extending diffeomorphisms from S to R defines a canonical map £ : PMods —
PModg. If S is a torus with one hole, this map is an isomorphism and the Theorem
follows. Otherwise (under our assumption that S is of positive genus, cf. 7.1), there
is a natural short exact sequence

1 — m(R) 2% PMods % PModg — 1.

For a discussion of this exact sequence, as soon as for the proof of the following
two facts about the homomorphism 9 from it, see, for example, [12], Section 6.1. In
discussing these properties of d, it is convenient to assume that the base point x for
the fundamental group m(R) = m1(R, x) is contained in the interior of the attached
disc D and that the diffeomorphisms extended from S to R fix this base point .
Then the extended diffeomorphisms act on m(R) = m(R, ). This action gives rise
to a well defined action of PModg on m1(R), which we will denote by a dot.

First we need a description of the image 9([l]), where [{] is the homotopy class of
an embedded loop [ in R based at . We consider (without any real loss of generality)
only the case when the image of [ intersects ID in an arc meeting the boundary of D
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only at its two endpoints. Then we can find an annulus A in R containing D in its
interior and having the image of [ as its axis. Let a be the boundary component of
A situated to the right of [ with respect to some fixed orientation of S (notice that
[ is a map [0,1] — R and its image is naturally oriented), and let b the boundary
component situated to the left of [. Then

o([l]) = taty "

The second fact we need is the following formula relating 9 and the above action of
PMods on 71 (R):
Of - a) = fola) /.

The extension homomorphism F : PMods — PModg maps our Dehn twists along
the circles in C into the corresponding Dehn twists in PModg (note that both #;,, and
L4, are mapped to 1y, ) which generate PModg by the inductive assumption (siﬁce R
has one hole less than S). Hence, it is sufficient to show that the group G generated
by the Dehn twists along the circles of the configuration C contains Ker £ = Im 0.
It is sufficient to show that G contains a set of generators of this image Imad. To
begin with, G contains ¢y, t7' = 9([l]), where [ is the loop represented on Figure 7.2.
In view of the above relation between 0 and the action of PModg on m(R), it is
sufficient to show that the group generated by the PModgs-orbit of [I] contains a set
of generators of m1(R). Now, several elements of this group are calculated on Figures
7.3-7.8. Among them are some of the standard generators of m;(R), namely, the ones
on Figures 7.4, 7.7, 7.8. The loop on Figure 7.2 also represents a standard generator.
Clearly, by continuing these calculations in the same way, we will eventually get a set
of generators for m(R). It follows that G contains a set of generators of d(m(R)).
This implies that our Dehn twists generate PModg. The induction completes the
proof. O

7.4. Remark. The Lickorish generators for the case b = 0 include only a part of
our generators. In fact, the circles ¢y; are not needed. By following the above proof
it is easy to see that these circles are not need in the case b > 0 either.

8. TWIST-PRESERVING HOMOMORPHISMS

In this section, S and S’ denote compact connected oriented surfaces. We assume
that S has positive genus and is not a closed torus.

Let p : Mods — Modg or PMods — Modg: be an injective homomorphism. We
say that p is twist-preserving if p(t,) is a right Dehn twist about a nontrivial circle
on S’ for each o € V4(5). In other words, p is twist-preserving if for each a € V4(5),
there exists an isotopy class p(a) € V/(.57) such that p(t,) = {,). By Theorem 4.1,
p(a) is uniquely determined by the identity p(ta) = t,(a)-

This section is devoted to injective twist-preserving homomorphisms p : Modg —
Modg: or PMods — Modg. We would like to prove that such a homomorphism is,
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in fact, induced by a diffeomorphism S — S’. We will actually do this under two
different (but overlapping) assumptions: if the genus of S is at least two, and if the
genus of S is at least one and the maxima of ranks of maximal abelian subgroups of
S and S’ differ by at most one. The first case is dealt with in Theorem 8.9, and the
second one in Theorem 8.15. These two theorems are the main results of this section.
Both of them require a lot of preliminary work, done in Lemmas and Corollaries
8.1-8.8 and in Lemmas 8.10-8.14 respectively.

For the remainder of this section, we assume that p is twist-preserving homomor-
phism Mods — Modg: or PMods — Modg:. Let a be a nonseparating circle on §.
For a nonseparating circle a on S, we will denote by p(a) some representative of the
isotopy class p(«), where « is the isotopy class of a. Then p(a) is well defined up to
isotopy on S" and p(t,) = ().

Lemma 8.1. p(a) = p(B) if and only if o = (3.

Proof. The “if” clause is trivial. Suppose that p(a) = p(f). This means that p(t,) =
p(tg). Since p is injective, this implies that ¢, = t3. Hence, by Theorem 4.1, a = (.
This completes the proof. [

Lemma 8.2. Let a and b be distinct nonseparating circles on S. Then:
(1) Z(p(d),p(b)) =0 if and only Zfz(avb) =0;
(ii) i(p(a),p(b)) =1 tf and only if i(a,b) = 1.

Proof. Tt follows from trom Theorem 4.2 that i(a,b) = 0 if and only if ¢, and ¢,
commute and i(a,b) = 1 if and only if t,t3t, = tpt,ty. The result follows from the fact
that p is an injective homomorphism. [

Corollary 8.3. p(a) is nonseparaling for every nonseparating circle a on S.

Corollary 8.4. Let C' be a system of nonseparating circles on S and o be the cor-
responding simplex of C(S). Let p(o) = {p(a) : « € o}. Then p(o) is a simplex of
C(S5").

Lemma 8.5. Let P be a disc with two holes embedded in S and such that S\ P is
connected and OP is a system of circles on S. Let a, b and ¢ be the three boundary
components of P. In view of Corollary 8.4 {p(a),p(b), p(c)} is a simplex and, hence,
we may assume that circles p(a), p(b) and p(c) are disjoint. Then p(a), p(b) and p(c)
bound a disc with two holes P embedded in S" such that 5"\ P' is connected and 0P’
is a system of circles on S’.

If, in addition, S is a closed surface of genus 2, then S is also a closed surface of
genus 2 and, hence, S" is a union of P’ and another disc with two holes ()" meeting
P" along their common boundary.
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Proof. Since S and S\ P are connected, the topological type of S'\int P is determined
by the topological type of S (and the fact that P is a disc with two holes). It follows
that up to a diffeomorphism the pair (5, P) is determined by S. By looking at one
such pair on Figure 8.1, we see that we may choose a pair of nontrivial circles d and
e on S such that

i(a,d) =1i(d,b) = 1(b,e) =i(e,c) =1
and
i(d,e) =i(d,c) =1i(e,a) = 0.

We assume that the circles a, b, ¢, d and e are in minimal position. It is clear that
all circles a, b, ¢, d and e are nonsepaprating (since any one of them intersects some
other transversely at one point).

By Lemma 8.2, the circles p(a), p(b), p(c), p(d) and p(e) have the same pairwise
geometric intersection numbers as a, b, ¢, d and e. Clearly, we may assume that p(a),
p(b), p(c), p(d) and p(e) are in minimal position.

Let N (respectively N') be a neighborhood of the union aUbUcUdUe (respectively
pa)Up(b)Up(c)Up(d)Up(e)) diffeomorphic to a torus with two holes and containing
this union as a deformation retract. Cf. Figure 8.2.

As is well known, our assumtions on the intersection numbers and the fact that our
circles are in minimal position imply that there exist a diffeomorphism H : N — N’
such that H(z) = p(x) for each z = «a, b, ¢, d or e. Compare [I2], Lemma 5.1, or
[M], Lemma 4.9. (In both [12] and [M] only mazimal chains are considered, but the
proofs work with trivial changes for all chains. The sequence of circles a,d, b, e, cis a
particular example of a chain; the reader can figure out the general definition without
any trouble.)

If F:S5 — S is a diffeomorphism with support in N, then we will denote by F'H
the diffeomorphism S’ — S’ equal to Ho F|[No H™' on N’ and equal to the identity
outside N'. For example, if T} is a twist map about a circle in N (always assumed
to have support in N), then T is a twist map about the circle H(x). In particular,
if © = a, b, ¢, dor e, then TH is a twist map about p(a), p(b), p(c), p(d) or p(e)
respectively. We denote it also by T (.).

Let F=T.oT.oTyoT;and G =T ' oT ' oT; ' oT;", and let us consider the
isotopy classes of circles F'(a) and G(a) in N and in S. A circle isotopic to F(a) in
N is found on Figure 8.3. This circle together with a circle isotopic to G(a) is shown
on Figure 8.4. It is clear that the circles on Figure 8.4 are in minimal position in N
and, hence, have the intersection number 2 there. On the other hand, these circles
are isotopic on S to the disjoint circles shown on Figure 8.5, and, hence, have the
intersection number 0 on S. These properties are crucial for our proof.

Let f and g be the isotopy classes of F' and G respectively. Clearly, f = t.t.t;t; and
g = t71-%;17 . Consider now ¢ = ft,f~' and ¢ = gt,g~'. These two elements
are Dehn twists about F'(a) and G(a), respectively. On the other hand, ¢ and ¢ are
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products of several Dehn twists about circles a, b, ¢, d and e. This implies that p(¢p)
and p(t) are similar products of Dehn twists about circles p(a), p(b), p(c), p(d) and
p(e). This implies, in turn, that we can take (F o T, o F~)7 and (G oT, o G™1)H
as representatives of p(p) and p(¢)) respectively. Since F o T, o F~! (respectively
G oT,oG™) is a twist map about F(a) (respectively G(a), it follows that p(p)
(respectively p(1))) is a Dehn twist about H(F(a)) (respectively H(G(a)).

Clearly, the circles H(F'(a)) and H(G(a)) have the same intersection number in
N’ as the circles F(a) and G(a) have in N. If none of the two boundary components
of N' bounds a disc in S, these circles have the same intersection number in S also.
Hence, in this case the intersection number of H(F(a)) and H(G(a)) is 2 and Dehn
twists p(g) and p(1p) about these circles do not commute (cf. Theorem 4.2). On the
other hand, the elements ¢ and ¢ are Dehn twist about circles F/(a) and G(a), and,
since these circles have the intersection number 0 in S, these two elements ¢ and
¢p commute in Modg. Since p is a homomorphism, this implies that p(¢) and p(¢)
commute. The contradiction we reached means that at least one of the boundary
components of N’ bounds a disc in S’. Clearly, this implies the first assertion of the
Lemma.

Let us prove the second assertion. So, we assume now that S is a closed surface
of genus 2. Let U (respectively V') be a neighborhood of a U d (respectively ¢ U e) in
S diffeomorphic to a torus with one hole and containing this union as a deformation
retract. We may assume that U/ and V' are disjoint. Let u, v be the boundary circles
of U, V respectively. By Theorem 4.3 ({,14)° = {,, and ({.t.)® = ¢,. On the other
hand, u is isotopic to v on S because S is a closed surface of genus 2; cf. Figure 8.6.
It follows that ¢, = ¢, and (¢,t4)® = (tct.)°. Hence (p(ta)p(ta))® = (p(te)p(t.))®.

Note that (p(t,)p(t4))® is represented by (77 o T{1)5 = (T o Thay)®. Applying
Theorem 4.3 to S, we see that (T o Th(g))® is isotopic to a twist map Ty
about H(u). Hence, (p(tq)p(t4))® = tmey. Similarly, (p(te)p(t.))® = tp). Since
(p(ta)p(ta))® = (p(te)p(te))®, we conclude that tg(y = tg(). By Theorem 4.1, H(u)
is isotopic to H(v). Since H(u) and H(v) are disjoint (because U and V are), they
bound an annulus. The union of H(U), H(V') and this annulus is a closed surface of
genus 2 contained in S’. Clearly, it has to be equal to the surface S’ itself. Now, the
fact that S’ is closed surface of genus 2 and that P’ is a disc with two holes implies
that Q' = S’ \ int P’ is also a disc with two holes. This completes the proof of the
second assertion of the lemma. O

Lemma 8.6. Let ' be a system of nonseparating circles on S and o be the cor-
responding simplex of C(S). Let p(o) be the corresponding simplex of C(S) as in
Corollary 8.4 and let p(C) be a realization of p(c). If a and b are adjacent components
of C, then p(a) and p(b) are adjacent components of p(C').

Proof. Recall (cf. 2.1) that @ and b are adjacent if there exists a component @ of
S¢ such that @ and b both correspond to components of d@Q. In this case there
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exists a nontrivial circle d on S such that i(d, a),i(d,b) # 0 and ¢(d, ¢c) = 0 for every
component ¢ # a, b; cf. Figure 8.7.

Let us show that we always can replace d by a nonseparating circle with the same
properties. Suppose that d is separating. Let d’ be the image of a under a twist
map about d. Clearly, i(d’,¢) = 0 for every component ¢ of C different from a,b.
Since d' is the image of @ under a diffeomorphism of S and « is nonseparating, d’ is
nonseparating. By a special case of Proposition 1 from [FLP], Expose [4], Appendice,
i(d'ya) =i(d,a)* and i(d',b) = i(d,a)i(d,b). Hence, d' is the desired circle.

So, we may assume that d is nonseparating. Then, p(d) is defined. By Lemma
8.2, i(p(d), p(a)),i(p(d), p(b)) # 0 and i(p(d), p(c)) = 0 for every component ¢ of C
different from a,b. Hence, p(d) is isotopic to a circle whose intersection with each
of p(a) and p(b) is nonempty but whose intersection with p(c) is empty for each
component ¢ of C' different a,b. The existence of such a circle implies that p(a) and
p(b) are adjacent components of C’. This completes the proof. O

Lemma 8.7. Let C be the configuration of circles on S introduced in 7.1. Then there
exists an embedding H : S — S such that H(a) = p(a) for every circle a of the
configuration C.

Moreover, if S" is not a closed torus, then we can find an embedding H such that for
every componenl ¢ of 05 ils image H(c) is either a component of S’ or a nontrivial
circle on S'.

Proof. Without any loss of generality we may restrict our attention to the case when
p is defined on PModg.

We may assume that the configuration of circles p(a), where a runs over the circles
of C, is in minimal position. We would like to apply Lemma 7.2 to the correspondence
a + p(a) in the role of # +— 2’. Note that this correspondence is injective by
Lemma 8.1, satisfies the condition (i) from Lemma 7.2 by Lemma 8.2 and satisfies
the condition (ii) from Lemma 7.2 by Lemma 8.5. Lemma 8.5 also ensures that S’
is a closed surface of genus 2 if S is. Hence, the first part of Lemma 7.2 applies and
there exists an embedding H : S — S’ such that the image H(S) contains all circles
p(a) for a in C.

If S is a closed torus, then S is a torus with one hole, because otherwise (' contains
at least two circles, contradicting to Lemmas 8.1 and 8.2. (Recall that S is not a
closed torus.) In this case there are only two circles, ay, az, in C. The corresponding
circles p(ay), p(az) intersect transversely at one point. This, clearly, implies the first
assertion of the Lemma in this case. The second one is vacuos in this case.

Suppose now that S’ is not a closed torus. Let us prove that for every component
c of 0S5 its image H(c) does not bound a disc in S’. Suppose that to the contrary
some of these images H(c) bound discs in S’. Let R’ be the result of adding these
discs to H(S). Note that because S’ is not a closed torus, R’ is not a closed torus
also. Clearly, R’ has the same genus as S and (strictly) less boundary components
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than S. Hence, the maximal number of circles in a system of circles on R’ is less
than the corresponding number for S (cf. 2.1; the fact that R’ is not a closed torus
is important here). It follows that some of the circles p(a), where a runs over the
components of (', are isotopic in R and, hence, in S’. But this contradicts to Lemma
8.1. The contradiction proves our assertion.

It may happen that images H(a) and H(b) of two boundary components are iso-
topic. Then they are both nontrivial in S’ and bound an annulus in S’. Let us
choose one circle from each such pair and then add to them all nontrivial circles of
the form H(c), ¢ is a boundary component, which are not isotopic to other circles
of this form. The result is a system of circles on S’, which we denote by D. Let §
be the corresponding simplex of C(S’). Let S” be the component of S}, containing
H(S). Obviously, S” is diffeomorphic to S (because S” can be obtained from H(S)

by glueing several annuli along some boundary components).

By Theorem 7.3, PModg is generated by Dehn twists ¢, about circles a in C. Hence,
Im p is generated by Dehn twists ¢,y = p(t,). All these Dehn twists and, hence,
all elements of the image Imp can be represented by diffeomorphisms supported in
H(S) and, in particular, fixing D. It follows that Imp C M(§) and the composition
rp o p : PMods — Modg, is defined. Moreover, Imrp o p C Modg, (S”) and the
composition mgn 0 rp o p is defined (cf. 2.3 for notations). In addition, any element
of Imrp o p can be represented by a diffeomorphism equal to the identity on S}, \ S”.
It follows that Kermgn orp o p = Kerrp o p.

We claim that this kernel is, in fact, trivial. Recall (cf. 2.3) that the kernel of rp is
the free abelian group generated by Dehn twists about components of D. It follows
that Kerrp N Imp is a free abelian group contained in the center of Im p. But, this
center is finite in view of Lemma 6.2. Hence, the intersection Kerrp N Imp is free
abelian and finite at the same time, so it has to be trivial. Hence, KerrpNImp = {1}
and Kerrp o p = {1}. It follows that Kerms» orp op = {1} and the homomorphism
p" = msn orp o p is injective.

Now, we can apply previous results to p” : PMods — Modgr in the role of p
(clearly, p" is twist-preserving). Since S” is diffeomorphic to S and the condition
(ii1) of Lemma 7.2 is fulfilled by Lemma 8.6, now we are in the position to apply the
second part of the Lemma 7.2. It gives us an emebdding Hy : S — S” such that
Hy(a) = p(a) for all @ in C. After deforming, if necessary, Hy a little we may assume
that Hy(S) C int S”. Then the composition H of Hy with the canonical map S” — 5’
is also an embedding and if the deformation is small enough, then H(a) = p(a) for
all @ in C. Applying to H the already proved results, we see that the image H(c) of
any boundary component ¢ does not bound a disc in S”. This means that if H(c) is
a trivial circle for a boundary component ¢, than H(¢) is parallel to a component of
0S’. By deforming H in a neighborhood of such boundary components ¢ we now can
fullfil the second condition of the Lemma. This completes the proof. [
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Lemma 8.8. IfH : S — 5’ is a diffeomorphism such that p(a) = H(a) for all circles
a in C, then p is induced by H.

Proof. Recall that the isomorphism H, : Mods — Modg induced by H is defined by
the formula H.[G] = [HGH™'], where G is an orientation preserving diffeomorphism
S — S and, as before, [F'] denotes the isotopy class of a diffeomorphism F. Obviously,
H*(PMOdS) = PMOdSI.

By Theorem 7.3, the Dehn twists ¢, over the circles a of C form a set of generators
of PMods. Since p(la) = lya) = lh@) = H(la) for all such a, this implies that p
agrees with H, on PModg. In particular, this proves the Lemma if p is defined on
PMOds.

It remains to consider the case where p is defined on Mods. lLet ¢ = H ' o
p : Mods — Modg. Then o is equal to the identity on PModg. Recall that if
f € Mods and o € V(S), then ft,f™' = ts,). By applying o to this equality,
we get o(f)o(ta)o(f)™" = o(ls)) and, since, to,ls0) € PMods, this implies that
o(f)tac(f)™" = Ls(a) and, consequently, {y(f)a) = lf(a). In view of Theorem 4.1, this
in turn implies that o(f)(a) = f(a) or o(f)™' f(a) = a for all @ € V(S). Now it
follows from Lemma 6.1 that o(f)™'f € Cmoas(PMods). Recall that S is assumed to
be of positive genus and not a closed torus. If S is, in addition, not a torus with one
or two holes, then the centralizer Cyioa,(PModg) is trivial by Theorem 6.3. Hence,
o(f)"'f =1for all fand o =id in this case. If S is a torus with one or two holes,
then Cyods(PMods) 2 Z/2Z, by the same Theorem 6.3. If S is a torus with one
hole, then Mods = PModg and, hence, ¢ = id. Finally, if S is torus with two holes,
then PModgs is a subgroup of index 2 in Modg. In this case, if f & PModg, then
o(f) € PMods, and, since PModg is of index 2 in Modsg, it follows that o(f)™'f €
PMods. Combining this with the fact that o(f)™'f € Cymoas(PMods), proved above,
we conclude that o(f)™'f € C(PMods). But C'(PMods) is trivial in this case by
Theorem 6.3. Tt follows that o(f)~'f =1 for all f and ¢ = id in this case also. So,
o =1d in all cases. It follows that p = H,. This completes the proof. O

Theorem 8.9. Suppose that S is a surface of genus g > 2. If p : Mods — Modg: is
an injective twist-preserving homomorphism, then p is induced by a diffeomorphism

S — 5.

Proof. 1t is especially simple (after all previous work) for closed surfaces. If S is
closed, then the embedding H provided by Lemma 8.7 is a diffeomorphism. Hence,
Lemma 8.8 implies that p is induced by H. Note that we need only the trivial part
of (the proof of) Lemma 8.8 here, because PMods = Modg in this case.

Let us consider now the general case. We will use the notations of Section 5.2.
Let H : S — 5 be the embedding provided by Lemma 8.7. If FF' : § — S is
a diffeomorphism fixed on 05, then we can define a diffeomorphism S’ — S’ by
extending the diffeomorphism H o F'o H™' : H(S) — H(S) by the identity to

the whole surface S’. By passing to the isotopy classes, we get the (well known)
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homomorphism Mg — Mg induced by H. We will denote it by H,. Let us consider
the followng diagram.

Hy
Ms —_— Msl

| |
PMods —%— Modg

The vertical maps are the canonical homomorphisms p : Ms — PModg, p' :
Mg — Modgs:. According to Lemma 8.7, p o p(fa) = p(ta) = tH(a) for all a in C.
Also, clearly, p' o H,(1,) = p'(ln()) = tw() for a in C. It follows that p o p and
p’ o H, agree on the set {{, : a € C}. But, in view of Theorems 7.3 and 5.3, this set
generates Mg. (This reference to Theorem 5.3 is the only place in the proof where
the assumption g > 2 is used.) Hence, our diagram is commutative.

Now, if ¢ is a boundary component of S such that H(c¢) is a nontrivial circle on 5,
then p' o H.(1.) = p'(fH(c)) =ty # 1. On the other hand, pop(t.) = p(1) =1. The
contradiction shows that H(c¢) cannot be a nontrivial circle for a boundary component
c. In view of Lemma 8.7, this means that H(95) C 05" (note that since S is of genus
at least 2 and, hence, PModgs contains a free abelian subgroup of rank 3, S’ cannot
be a closed torus). It follows that H is diffeomorphism. An application of Lemma
8.8 completes the proof. [

Lemma 8.10. Lel g,b (respectively, ¢',b') be the genus and the number of boundary
components of S (respectively, S’). Suppose thal the mazima of ranks of abelian
subgroups of Modg and Modg: differ by at most one. Then either S is a ltorus with
one hole and S" is a closed torus, or 3g +b <3¢ +b <3g+b+1.

Proof. Since, by our assumptions, S is of positive genus and not a closed torus, the
maxima of ranks of abelian subgroups of Modg is equal to 3g — 3 + b (cf. 2.1). Note
that ¢(a,b) = 1 for some circles a,bon S. By Lemma 8.2 i(p(a), p(b)) = 1 and, hence,
S” is of positive genus. It follows that the maxima of ranks of abelian subgroups of
Modg: is equal to 3¢" — 3 + b’ unless S’ is a closed torus. Also, 3¢ —3 + b > 2, unless
S'is a torus with one hole (when it is equal to 1). Hence, if S is not a torus with one
hole, the injectivity p : Mods — Modg: implies that the maxima of ranks of abelian
subgroups of Modg: is also at least 2 and S’ cannot be a closed torus. Now, it is
clear that if S is not a torus with one hole and S’ is not a closed torus, then the
first inequality follows from the injectivity of p again and the second one from the
assumption that the maxima of ranks differ by at most 1. O

Lemma 8.11. Suppose that the mazxima of ranks of abelian subgroups of Mods and
Modg: differ by at most one. If S is a torus with one hole, suppose that, in addition,
S’ is not a closed torus. Let H : S — 5" be an embedding as in Lemma 8.7. If
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H(S) # 5, then there exists a unique isotopy class v € V(S') such that for each
component ¢ of S, either H(c) is a component of 5" or H(c) € 4.

Proof. We use the notations g,b,¢',b" from Lemma 8.10. Since H(S) # S5’, there
exists a component ¢ of 95 such that H(c) is a nontrivial circle on S’. If ay, ay are
two components of 05 such that H(ay), H(az) are nonisotopic nontrivial circles on
S’ then H(C)U H(a1) U H(az) is a system of circles on S’ consisting of 3¢ — 1 + b
components. In view of 2.1,3g —14+b< 3¢ —3+ . Since 3¢’ +b <3g+b+ 1 by
Lemma 8.10, this is impossible. The Lemma follows. [J

Lemma 8.12. In the situation of Lemma 8.11, if H(S) # S’ and ~ is the isotopy
class provided by Lemma 8.11, then the image of p is contained in the stabilizer of ~
mn MOdSI.

Proof. We use the notations ¢,b,¢',b from Lemma 8.10. Since H(S) # S5’, there
exists a component ¢ of 95 such that H(c) is a nontrivial circle on S’ and ~ is the
isotopy class of H(c). Since H : S — 5" is an embedding, H(c) is disjoint from H(a)
for every nontrivial circle ¢ on S. If @ is a circle of the configuration C, then, in
view of Lemma 8.7, p(a) = H(a) and, hence, p(t,) = l,) = Lf(,) commutes with
i) = ty. Now, Theorem 7.3 implies that the group p(PMods) commutes with ..
If p is defined on PModg, it remains only to apply Theorem 4.1 and the standard
relation ft,f~! = ts().

If p is defined on Modg, an additional argument is needed (compare the proof of
Lemma 8.8). Let f € Mods, f' = p(f) and 3 = f'(v). If a is a nonseparating circle
on S and « is its isotopy class, then f~'¢,f € PMods and, hence, ¢, commutes with

p(f7 o f) = () p(ta) [ = (") o) [ = Lsn=1(p(a))- By Theorem 4.2, this implies
that 7(v, (") "' (p(«))) = 0. Let b be some circle in the isotopy class 3 = f'(y). Then
i(b, H(a)) = i(b, p(a)) = i(5:ple)) = (/') p() = i, (F)"(p())) = 0. Since
i(b, H(a)) = 0 for all nonseparating circles @ on S (in particular, for all circles in C),
we can replace b by an isotopic circle disjoint from H(S).

If b is not isotopic to H(c), then H(C) U H(c) U b is system of circles on S" with
39 — 1+ b components. Hence, 3¢ —14+b <3¢’ —3+ . Since 3¢+ <3g+b+1 by
Lemma 8.10, this is impossible. Hence, b is isotopic to H(¢) and p(f)(y) = f'(v) =
B =~. Since f € Modg is arbitrary, this completes the proof. [

Lemma 8.13. In the situation of Lemma 8.11, if H(S) # S’ and ~ is the isotopy
class provided by Lemma 8.11, then for each nontrivial circle a on S there exisls
an integer N, such that p(t,) = tguyth*. If b = F(a) for some diffeomorphism
F:5—=S, then Ny = N,.

Proof. As in the proof of Theorem 8.9, let us consider the following diagram.
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H,
Mg —_— Ms/

| |
PMods —%— Modg

Recall that p, p’ are the canonical homomorphisms and H, maps the isotopy class
of a diffeomorphism F': S — S into the isotopy class of the extension of H o F'o H™!
by the identity to the whole surface S’. Since now the genus of S may be equal
to 1, we cannot invoke the Theorem 5.3 in order to conclude that this diagram is
commutative. But we still know that p o p is equal to p’ o H, on a Dehn twist ¢, if a
is a circle of the configuration C.

Let a be a nontrivial circle on S. In view of Theorems 5.1 and 7.3, we have

U T R S A SR 9
for some circles uq, us, ... ,u, € C and some boundary components vy, vy, ... ,v, of
S. Since p(iy,) = ty, and p(i,,) = 1 for all i, j, we have
pta) = pop(la)
= p(tul)p(t’UQ) .- 'p(tum)

= tp(ul)tp(w) .. .tp(um)
= tH(ul)tH(ug) .. -tH(um)

(8.1)

(the last equality follows from Lemma 8.7). On the other hand,

(8.2) fH(a) = H*(ga) = ZH(’U,]){H(’MQ) .. '{H(um)iH(’ul){H(vg) .. -iH(un)-

By the definition of 7, each of the circles H(v;) is either a component of 95’ (and
then p'({(,,)) = 1), or in the isotopy class v (and then p'({p(,)) = ty). It follows
that

(8.3) b = P (TH() = L)) -t )5

for some integer number N,. By combyning (8.1) and (8.3), we get

p(ta)™ = ta )
and
plta) = Lrayly".
This proves the first assertion of the Lemma.
Suppose that for two nontrivial circles a and b on S there exists a diffeomorphism

F : S — S such that F(a) = b. We may assume that F is orientation-preserving.

Let f € Modgs be the isotopy class of F and f" = p(f). Then ¢, = ft,f~" and,
hence, p(ty) = f'p(ta)(f")". Since p(Modgs) is contained in the stabilizer of v in
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Mods/, f'(y) = 7. Since H(c) € ~, we may choose a diffeomorphism F’' € f’
such that F'(H(c)) = H(c). By the already proved first assertion of the Lemma,
p(ty) = f'p(t.)(f)~" implies that

ty

by = @ ()7 = et i) = e
Note that H(a) and H(b) are not isotopic on S’ to H(c). Thus F'(H(a)) and F'(H(b))

are not isotopic to H(c).

Clearly, if N, = 0, then H(b) is a realization of the canonical reduction system
for th )th. Otherwise, H(b) U H(c) is a realization. Likewise, if N, = 0, then
F'(H
F'(H(a)) U H(c) is a realization. Since g )t]yvb = trn (a))tjvv“, we conclude that:

(i) F'(H(a)) is isotopic to H(b);

(a)) is a realization of the canonical reduction system for /(g (q))th*. Otherwise,

(ii) N, —Olfandonlylbe—O

Since tH( )twb = LF(H(a ))tva, (i) implies that ¢t = ¢Na. Then, (ii) and Theorem
4.1 imply that N, = N,. This completes the proof of the second assertion of the
Lemma. [

Lemma 8.14. [f a is a circle on S bounding a torus with one hole in S, then p(t,)
is @ Dehn twist. In the situation of Lemma 8.11, p(t,) = tr(a)-

Proof. Let P be the torus with one hole bounded in S by a. Clearly, there are two
circles u, v in P intersecting transversely in one point. By Theorem 4.3 ¢, = ({,t,)°.
Hence, p(t.) = (p(tu)p(te))® = (Lpu)tow))® (note that both u and v are nonseparating).
By Lemma 8.2 i(p(u),p(v)) = 1 and, hence, we may assume that p(u) and p(v)
intersect transversely at one point. Now, Theorem 4.3 implies that ({,(u)tsw))® = tar
for some circle a’ on S’. It follows that p(t,) = t, is a Dehn twist. This proves the
first assertion of the Lemma.

(Clearly, the first assertion toghether with Lemma 8.13 imply the second assertion.
This completes the proof. [

Theorem 8.15. Suppose that S has positive genus and is not a closed torus. If S
is a torus with one hole suppose, in addition, that S’ is not a closed torus. Suppose
that the maxima of ranks of abelian subgroups of Mods and Mods: differ by at most
one. If p: Mods — Modg is an injective twist-preserving homomorphism, then p is
induced by a diffeomorphism S — S’.

Proof. 1f the genus of S is at least 2, Theorem 8.9 applies. Hence, we need to consider
only the case when the genus of the surface S is 1.

Let H : S — 5’ be an embedding as in Lemma 8.7. In view of Lemma 8.8, we
may restrict our attention to the case when H(S) # 5'. Let v € V(5') the isotopy
class provided by Lemma 8.11. In view of Lemmas 8.7 and 8.11, v is the isotopy
class of the image H(c) of some boundary component ¢ of S. By Lemma 8.13, for
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each nontrivial circle a on S, there exists an integer N, such that p(t,) = tg)tle.
Of course, since p is twist-preserving, N, = 0 for each nonseparating circle ¢ on S.

We will divide the following arguments into three cases, according to the number
of boundary components of S (remember that S is assumed to be of genus 1 now).

The first case is when there are at least 3 boundary components. Let d be some
circle separating S into a torus two holes P and a sphere () with the same number of
holes as S. The boundary dP consists of d and a component e of dS. The boundary
Q) consists of d and the components of 95\ e. Let a be a nonseparating circle on P
and let S; be the complement in P of an (open) annulus having a as its axis. Then
S is a sphere with four holes. We can identify 57 with the sphere with four holes Sy
from 5.2 in such a way that: (i) Cy = e; (ii) Cy and C; are isotopic to a on P; (iii)
C5 = d. Then (4, Cy, Cy3 and Cy3 are nonseparating circles on S and 'y divides S
into a torus with one hole and a sphere with holes. See Figure 8.8.

Let t;,1;; be the images in Mod g of the elements i, th-j of the group Mg introduced
in 5.2 respectively. Since Cy = e is a boundary component, {o = 1. Hence, the lantern
relation (5.1) implies that

(8.4) litats = tizlistas.
Hence
(8.5) p(t)p(t2)p(ts) = p(tiz)p(tis)p(tas).

Since the circles C, Cy, C13 and Cy3 are nonseparating, we have

p(t) = tacy); p(tz) = ta(c,):

8.6
(8.6) p(l13) = L (cys); p(l2s) = Lr(cua).

Since (2 bounds a disc with one hole in S, Lemma 8.14 implies that also

(87) P(tm) = tH(Cu)'
Also, by Lemma 8.13,
(8.8) p(ts) = tra)ty

for some integer N. It follows from (8.5) and (8.6)—(8.8) that
N
2

(89) tH(Cl)tH(Cz)tH(C’s)t - tH(Cl2)tH(CIS)tH(023)'

Now, it follows from Lemma 8.11 that at most two components of 0.5 are mapped
by H to nontrivial circles on S’. Since we assume now that S has at least 3 boundary
components, we may choose the circle d in such a way that the circle e is mapped
by H to a boundary component of S’. By applying the lantern relation (5.1) to the
sphere with four holes H(S;) and the circles H(C;), H(C};), we get, in the same way
as (8.4), the following relation

(810) L) () H(Cs) = LH(C1)LH(C1) LH(C2s) -
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Comparing (8.9) and (8.10), we conclude that t]WV = 1 and, hence, N = 0. In other
words, p(l4) = tg () or, what is the same, p(l3) = tg(c,)-

On the other hand, we may choose the circle d in such a way that e will be equal
to ¢. Then all the circles C;, C;; will be mapped by H to nontrivial circles on 5.
By applying the lantern relation (5.1) to the sphere with four holes H(S;) and the
circles H(C;), H(C;;), we get now

(8.11) L) tH(C) L H(C) H(Cs) = LH(Cw)LH(Cra)LH(C2s)-

But, the second assertion of Lemma 8.13 implies that the number N from (8.8) is the
same for all choices of d and, hence, is equal to 0 in this case also. This means that

(812) p(tg,) = tH(Cs)
and (8.9) holds with N =0, i.e. (8.10) holds. Note that this time we deduced (8.10)

not from the lantern relation on H(S;), but from (8.5), and the result contradicts
to the lantern relation (8.11) on H(S;) because H(Cy) = H(e) = H(c) is now a
nontrivial circle on S’ (its isotopy class is 7). The contradiction shows that if H(.S) #
S’, then S cannot be a torus with at least three holes.

The second case is that of a torus with two holes. In this case we are going to use
the surface S itself in the same way as we used the surface P in the first case. Now
the boundary 35 consists of ¢ and another component e. Let a be a nonseparating
circle on S and let Sy be the complement in S of an (open) annulus having a as its
axis. Again, Sy is a sphere with four holes. We can identify S; with the sphere with
four holes Sy from 5.2 in such a way that: (i) Cy = ¢; (ii) Cy and C; are isotopic to a
on S; (iil) C5 = e. As in the first case, C;, Cy, Ci3 and Cy3 are nonseparating circles
on S and (', divides S into a torus with one hole and a sphere with, this time three,
holes.

Again, let ¢;,1;; be the images in Modg of the elements fz-,fz-j of the group Mg
introduced in 5.2. This time both Cy and C3 are boundary components, and, hence,
to = t3 = 1. The lantern relation (5.1) now implies that

(8.13) lity = tiglistas.
and
(8.14) p(t1)p(t2) = p(tiz)p(tis)p(tas)-

By the same reasons as before, the relations (8.6) and (8.7) hold. By substituting
(8.6) and (8.7) into (8.14), we get

(8.15) tH(C)EH(Cy) = LH(Cw)LH(C) L H (Cas) -

Now, we apply the lantern realation (5.1) to the sphere with four holes H(S;) and
the circles H(C;), H(Cjj). Note that the circle H(C)) is in the isotopy class v and
the circles H(Cy), H(C3), H(C12), H(C43), H(Cy3) are all nontrivial on S’. The circle
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H(C5) is either a boundary component or in the isotopy class v in view of Lemma

8.11. We get

(816) t'ytH(Cl)tH(Cg) = tH(C'u)tH(Cw)tH(Czs)

if H(C5) is a boundary component and

(8.17) tth(Ol)tH(Cz)tw = tH(Clz)tH(Cw)tH(Czs)

if H(C5) is in the isotopy class v. Comparing (8.15) with (8.16) or (8.17) we conclude
that either ¢, or tfy is equal to 1. This contradicts to the fact that ~ is the isotopy
class of the nontrivial circle H(c¢). The contradiction shows that if H(S) # 57, then
S cannot be a torus with two holes.

The third and the final case is that of a torus with one hole. In this case the
only boundary component ¢ of S is mapped by H to a nontrivial circle on S (in
the isotopy class v). By applying Lemma 8.14 to ¢ in the role of a, we conclude
that p(t.) = ta(c) = ty. But . =1, because c is a boundary component, and ¢, # 1,
because H(c) is nontrivial. The contradiction shows that it H(S) # S, then S cannot
be a torus with one hole either.

Hence, the assumption H(S) # S’ leads to a contradiction in all the cases and
Theorem follows from Lemma 8.8. [J

8.16. Remark. If S is a torus with one hole and 5" is a closed torus, then any
injective twist preserving homomorphism Modg — Modg: is an isomorphism induced,
in a natural sense, by an embedding H : S — S’. We leave the (easy) proof to the
reader.

9. SYSTEMS OF SEPARATING CIRCLES

In this section, S denotes a compact connected orientable surface of genus g with
b boundary components. We call two circles a,b on S topologically equivalent if there
is a diffeomorphism F' : S — S such that F'(a) = b. The goal of this section is to
show that the maximal or “almost” maximal systems of separating circles on .S with
all components topologically equivalent are, in fact, very special. The main features
of such systems of circles are described in Theorems 9.1 and 9.2.

Theorem 9.1. Let S be a compact connected orientable surface of genus g with b
boundary components. Let C be a system of topologically equivalent separating circles
on S. Suppose that C' has 3g — 4 + b components. Then for each component a of C
there exists a disc with two holes P, embedded in S such that 0P, consists of a and
two components of 0S. Moreover, S is either a sphere with five, six, seven or eight
holes or a torus with two holes.

Proof. Let n =39 —4+b. Sincen > 1, 3g+b > 5. Thus S is not a a sphere with at
most four holes or a torus with at most one hole.
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Let R be the surface obtained by cutting S along C'. Since each component of C' is
a separating circle on 5, the surface R has exactly n + 1 components. Moreover, the
genus of S is the sum of the genera of the components of R. Hence, there must be
a system D of g nonseparating circles on R. The union C'U D is a system of circles
on S with n + g components. Hence, n + g < 3g — 3 4+ b. Since 3¢ — 4 + b = n, we
conclude that one of the following conditions must hold:

(i)g=1landn=>b—1,

(i) g=0and n =b — 4.

For each component ) of R, let Cg be a maximal system of circles on ) and mg
be the number of components of C. Let m be the sum of mg over all components
() of R. The union of €' and the systems of circles Cg over the components () of R
is a maximal system of circles on S. Hence, 3¢ —3+b =n+m. Sincen =3g—4+0b,
we conclude that m < 1. Thus, every component of R is either a disc with two holes,
a sphere with four holes or a torus with one hole. Moreover, there is at most one
component of R which is not a disc with two holes. Since R has n + 1 components,
at least one component of R is a disc with two holes.

Consider the case ¢ = 1 and n = b — 1 first. Since the genus of S is equal to the
sum of the genera of the components of R, exactly one component () of R has the
genus one. By the preceding considerations, () is a torus with one hole. Since S is
not a torus with one hole, Q) must correspond to a component a of C'. Thus a is a
circle on S bounding a torus with one hole embedded in S. Note that every nontrivial
circle on @) is nonseparating. It follows that int () does not contain any components
of C' and, hence, @) is a component of R. Since all components of C' are topologically
equivalent, it follows that R has at least n components which are tori with one hole.
Since R has at most one component which is not a disc with two holes, n = 1 and
C' consists of a single separating circle @ on S. Thus, R has two components, P and
(), which meet along a. Since @) is a torus with one hole and R has at most one
component which is not a disc with two holes, P is a disc with two holes. Hence,
S is a torus with two holes. Moreover, P is embedded in S in such a way that 9P
consists of a¢ and the two components of 95.

Let us consider now the case ¢ = 0 and n = b—4. Let a be a component of C'. The
circle a separates S into two spheres with holes P, and (),. Let p4+1 and ¢+ 1 be the
numbers of boundary components of P, and @), respectively. Since a is nontrivial,
p,q > 2. We may assume that p < ¢g. Since the components of C' are topologically
equivalent circles on S, the pair of integers p, ¢ does not depend upon the component
a of C'. Moreover, p+ g = b.

Suppose that n = 1. Since n = b — 4, b is equal to 5. Hence, S is a sphere with
five holes. The system C' consists of a single separating circle a. Since p,qg > 2 and
and p < g, we have p = 2 and g = 3. Hence, P, is a discs with two holes embedded
in S such that 9P, consists of a and two components of 05.
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Suppose now that n > 2. Let a and b be distinct components of C'. If b is contained
in P,, then either P, or () is contained in P,. Since both P, and (), contain at least
as many boundary components of S as P, (namely, p or ¢ > p), this implies that b is
isotopic to a. Contradiction with the fact that C' is a system of circles implies that b
is contained in @),. A similar argument implies that P, is contained in ), and ¢ > p
(if ¢ = p, then b is isotopic to a again). It follows that P, and P, are disjoint for
every pair of distinct components a,b of C'. Hence R is the union of a component
Qo and the components P, over the components a of C'. Each component of 9@ is
either a component of C' or a component of 95S. Moreover, () and P, meet along
a for every component a of C'. Thus, no two components of dQ)y correspond to the
same component a of C'. Hence, Qg is embedded in S. Since at most one component
of R is not a disc with two holes and n > 2, P, is a disc with two holes for each
component a of €. Since the genus of S is zero, )y is not a torus with one hole.
Hence, ()¢ is either a disc with two holes or a sphere with four holes.

Thus 2 <n < 4. Sincen = b—4, S is a sphere with six, seven or eight holes. This
completes the proof. O

Theorem 9.2. Let S be a compact connected orientable surface of genus g with b
boundary components. Let C' be a system of topologically equivalent separating circles
on S. Suppose that C' has 3g — 3 + b components. Then for each component a of C
there exists a disc with two holes P, embedded in S such that 0P, consists of a and
two components of 0S. Moreover, S is a sphere with four, five or siz holes.

Proof. Let n =39 — 34 b. Since n > 1, S is not a disc with at most two holes or a
torus with at most one hole.

Let R be the surface obtained by cutting S along C. Since each component of C'
is a separating circle on S, R has exactly n + 1 components. Moreover, the genus of
S 1s the sum of the genera of the components of R. Hence, there must be a system
D of g nonseparating circles on R. The union C'U D is a system of circles on S with
n + g components. Hence, n+ g < 3g —3+b. Since n = 3g — 3+ b, we conclude that
g=0and n=5b-3.

Since n = 3g—3+b, C' is a maximal system of circles on S. Hence, each component
of R is a disc with two holes.

Let a be a component of C'. The circle a separates S into two spheres with holes
P, and ),. Let p+ 1 and ¢ + 1 be the numbers of boundary components of P, and
Q). respectively. Since a is nontrivial, p,q > 2. We may assume that p < ¢g. Since
the components of C' are topologically equivalent circles on S, the pair of integers
p, g does not depend upon the component a of C'. Moreover, p + g = b.

Suppose that n = 1. Since n = b — 3, b is equal to 4. In this case, S is a sphere
with four holes and C' consists of a single separating circle a. Both P, and @, are
discs with two holes embedded in S such that their boundaries consist of a and two
components of 05.
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Suppose that n > 2. Exactly the same argument as in the proof of Theorem
9.1 now implies that P, and P, are disjoint for every pair of distinct components
a,b of C. Hence, R is the union of a component )y and the components P, over
the components a of C'. Each component of Qg is either a component of C' or a
component of d5. Moreover, )y and P, meet along a for every component a of C'.
Thus, no two components of dQ) correspond to the same component a of C'. Hence,
(o 1s embedded in S. Since each component of R is a disc with two holes, P, is a
disc with two holes for each component a of ' and ()¢ 1s a disc with two holes.

Hence, 2 < n < 3. Since n = b — 3, 5 is a sphere with five or six holes. This
completes the proof. [

10. ALMOST TWIST-PRESERVING HOMOMORPHISMS

As in Section 8, S and S’ denote compact connected oriented surfaces. We assume
that S has positive genus and is not a closed torus. Let p : Mods — Modg be an
injective homomorphism. We say that p is almost twist-preserving if, for each isotopy
class o € V(5) there exists an isotopy class p(«) € V(S’) and nonzero integers M
and N such that p(tM) = t]p\éa). The goal of this section is to prove that, with few
exceptions, injective almost twist-preserving homomorphisms are actually induced
by diffeomorphisms S — S’ if the maxima of ranks of Abelian subgroups of Modg
and Modg/ differ by at most one. See Theorems 10.8, 10.9 and 10.10 for the exact
statements.

For the remainder of this section, we assume that p : Mods — Modg: is an injective
almost twist-preserving homomorphism. By Theorem 4.1, the isotopy class p(a) €
V(S") is uniquely determined by the equality p(tM) = tf)\ga), independently of M and
N. Since Dehn twists about nonseparating circles are conjugate in Modg, the integers
M and N may be chosen independently of o € V4(S). For each nonseparating circle
a on S, let p(a) be a realization of p(«), where « is the isotopy class of a. Then p(a)

is well defined up to isotopy on S and p(t¥) = ti)v(a). Note that, clearly, p(a) is the

canonical reduction system of ti)v(a) and, since ti)v(a) = p(tM) = p(t,)M, it is also the
canonical reduction system of p(t,).

For the remainder of this section we will denote by g, b (respectively ¢’, b') the
genus and the number of the boundary components of S (respectively S”).

Lemma 10.1. (i) p(a) = p(3) if and only if a = (.
(i1) Let C be a system of nonseparating circles on S and o be the corresponding

simplex of C(S). Then p(o) ={p(a) : a € 0} is a simplex of C'(5").

Proof. (i) The “if” clause is trivial. Since p is almost twist-preserving, p(a) = p(3)
implies p(t}) = p(t}). Since p is injective, this, in turn, implies that ¢t = ¢}

Hence, by Theorem 4.1, o = (3.



56 N. V. IVANOV AND J. D. MCCARTHY

(ii) Let a,3 € . Then t, and {3 commute. This implies that p(t¥) and p(t%)
commute or, what is the same, tf)\za) and ti)\zﬁ) commute. By Theorem 4.2, this implies

that i(p(a), p(3)) = 0. The assertion (ii) follows. O

Lemma 10.2. Suppose only that there exisls an injective (not necessarily almost
twist-preserving) homomorphism Mods — Mods/. Then the following holds:

(1) S” is not a sphere with at most three holes;

(ii) if S” is a sphere with four holes or a torus with one hole, then S is a torus with
one hole;

(iil) if S" is a sphere with five holes or a torus with two holes, then S is a torus
with one or two holes.

Proof. Since, by our assumptions, S is of positive genus and not a closed torus, the
maxima of ranks of abelian subgroups of Modg is equal to 3¢ —3+b (cf. 2.1). Again,
since S is of positive genus and not a closed torus, 3¢ —3 +b > 1. On the other
hand, if S’ is a sphere with at most three holes, then the maxima of ranks of abelian
subgroups of Modg is 0. This implies (i). If S’ is a sphere with four holes or a
torus with one hole, then the maxima of ranks of abelian subgroups of Modg: is 1. It
follows that 3¢ —3 4+ b <1 and 3g4+b <4. Since g > 1 and b > 1 if g =1 (because
S is not a closed torus), this implies that ¢ = b =1 and S is a torus with one hole.
This proves (ii). If S’ is a sphere with five holes or a torus with two holes, then the
maxima of ranks of abelian subgroups of Modg is 2. It follows that 3g —3 4+ b < 2
and 3g +b < 5. Since g > 1, this implies b < 2. Because S is not a closed torus, this
proves (iii). [

Lemma 10.3. Suppose that the mazima of ranks of abelian subgroups of Mods and
Mods: differ by at most one (and that p : Mods — Modg is an injective almost
twist-preserving homomorphism). Then the following holds:

(i) if S” is a sphere with sixz holes, then S is a torus with two or three holes;

(ii) if S" is a sphere with seven holes, then S is a torus with three or four holes.

(iil) if S" is a sphere with eight holes, then S is a torus with four or five holes.

Proof. Let C' be a maximal system of nonseparating circles on S and ¢ be the corre-
sponding simplex of C'(5). Let p(C) be a realization of the simplex p(o) = {p(a) :
a € o} (cf. Lemma 10.1 (ii)).

Since S is of positive genus and not a closed torus, C' consists of 3g — 3 + b com-
ponents and 3g — 3 + b is also the maxima of ranks of abelian subgroups of Modg.
By Lemma 10.1 (i) p(C) also consists of 3¢ — 3 4+ b components. Since Dehn twists
along nonseparating circles are all conjugate in Modg, all elements t¥. o € o are
conjugate in Modg and, hence, all elements tf)\za) = p(tM),a € o are conjugate in

Modg:. Now, Theorem 4.1 and the fact that ft;v(a)f‘l = tﬁcv(p(a)) for any f € Modg

imply that all components of p(C') are topologically equivalent on S’ in the sense of
Section 9. Since S’ is a sphere with holes in all our cases (i)-(iii), all components
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of p(C') are separating. This fact together with the assumption on the maxima of
ranks of abelian subgroups will allow us to apply the results of Section 9. After these
preliminary remarks we now proceed with the proofs of the statements (i)—(iii).

(i) If " is a sphere with six holes, then the maxima of ranks of abelian subgroups
of Modg is equal to 3. By our assumption, 3¢ —3 +b6 <3 <3¢g—3+ b+ 1 and
3g +b<6 <3g+b+ 1. Since g > 1, this implies that either ¢ = 1 and b = 2,3 or
g =2 and b = 0. We have to exclude the last case.

Suppose that ¢ = 2 and b = 0, i.e. that S is a closed surface of genus 2. In this
case C' and p(C) consist of 3 components. Note that 3 = 3¢’ — 3 + ' because 5’
is a sphere with 6 holes. As we had seen, all components of p(C') are topologically
equivalent. Hence, we may apply Theorem 9.2 to S’ and p(C') in the role of S and C
respectively. We conclude that for each component a’ of p(C') there exist a disc with
two holes P’ embedded in S’ such that 9P’ consists of ¢’ and two components of 35".
(Clearly, these discs with two holes are disjoint and the closure of their complement
in S” is another disc with holes embedded in S’, which we will denote @)’. Obviously,
Q" = p(0).

Let us consider now the hyperelliptic involution ¢ € Modg and its image i = p(7) €
Mods/. Together with ¢, the image ¢ is a non-trivial element of finite order (actually
of order two). By a well known theorem of Nielsen (cf. for example, [FLP], Exp.
11, §4), it can be realized by a non-trivial periodic diffeomorphism F’ : 5" — 5"
Moreover, we may assume that F’ is an isometry of a hyperbolic metric on S’ with
geodesic boundary. In addition, we may assume that the components of p(C) are
geodesics with respect to this metric. Now, it is well known that ¢ is the (unique)
non-trivial element of the center of Modg. In particular, 2 commutes with the Dehn
twists along the components of C'. It follows that ¢" commutes with the N-th powers
of the Dehn twists along the components of p(C'). Now, Theorem 4.1 and the relation
()7 =t (where o’ € V(S')) imply that i’ preserves the isotopy classes of
the components of of p(C'). Hence, F’ preserves the components of p(C') themselves
(we chose them to be unique geodesic representatives of their isotopy classes). This,
clearly, implies that F’ preserves the disc with two holes ()’. The diffeomorphism
Q" — Q' induced by F' preserves orientation and preserves each component of the
boundary. Hence, it is isotopic to the identity (cf., for example, [FLP], Exp. 2, §I11I).
Being an isometry, it is actually the identity. Hence, F’ is equal to the identity on
Q)'. Because F' is an isometry, this implies that F’ is equal to the identity on the
whole S” and, hence, " = 1. This contradicts to the injectivity of p. Hence, S cannot
be a closed surface of genus 2. This completes the proof of (i).

(ii) If 5" is a sphere with seven holes, then the maxima of ranks of abelian subgroups
of Modg: is equal to 4. By our assumption, 3g —3 +b6 <4 <3g—3+b+ 1 and
3g +b<7<39g+b+ 1. Since g > 1, this implies that either ¢ = 1 and b = 3,4 or
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g=2and b=0,1. We have to exclude the case g = 2.

Suppose first that ¢ = 2 and b = 1. In this case C and p(C') consist of 4 components.
Note that 4 = 3¢’ — 3 + b’ because S’ is a sphere with 7 holes. As we had seen, all
components of p(C') are topologically equivalent, and hence, we may apply Theorem
9.2 exactly as in the proof of (i). We conclude that for each component a’ of p(C)
there exist a disc with two holes P’ embedded in S’ such that P’ consists of a’ and
two components of 95’. Clearly, these discs with two holes are disjoint. Each of them
contributes two components to the boundary 95’. This implies that 95 has at least
8 components. Contradiction with the assumption that S’ is a sphere with 7 holes
completes our consideration of the g = 2,b =1 case.

Assume now that ¢ = 2,b = 0, i.e. that S is a closed surface of genus 2. In this
case C' and p(C') consist of 3 components. Note that 3 =3¢’ — 4 + b’ because 5" is a
sphere with 7 holes. Since all components of p(C') are topologically equivalent, this
means that we may apply Theorem 9.1 in this case. Again, we conclude that for each
component a’ of p(C') there exist a disc with two holes P’ embedded in S’ such that
OP' consists of a’ and two components of 35’. Clearly, these discs with two holes are
disjoint and the closure of their complement in S’ is a sphere with four holes embed-
ded in S’, which we denote ). One component of the boundary 9@ is a part of 95’
and the other components of Q)" are components of p(C'). Arguing exactly as in the
proof of (i), we can realize the image i’ = p(7) of the hyperelliptic involution ¢ by
an isometry F': S" — S’ of a hyperbolic metric on S” with geodesic boundary such
that F” preserves all the components of p(C') (we assume that they are geodesic).
Such an F’ obviously preserves ), and, preserving three of the four components of
the boundary 9@Q)’, it preserves them all. Since F' is orientation-preserving, it follows
that F" acts trivially on the first homology group of @' (with any coefficients). This
implies that F’ is equal to the identity on @’. (Note that F” is periodic and use, for
example, [I3], Theorem 1.3.) It follows that F” is equal to the identity on the whole
surface S’ and, hence, i = 1. As in the proof of (i), this contradicts to the injectivity
of p. Hence, S cannot be a closed surface of genus 2. This completes the proof of

(ii).

(ii1) If S” is a sphere with eight holes, then the maxima of ranks of abelian subgroups
of Modg: is equal to 5. By our assumption, 3g —3 +b6 <5 <3g—3+b+ 1 and
3g +b <8< 39+ b+ 1. Since g > 1, this implies that either ¢ = 1 and b = 4,5 or
g=2and b=1,2. We have to exclude the case g = 2.

Suppose first that ¢ = 2 and b = 2. In this case C and p(C') consist of 5 components.
Note that 5 = 3¢’ — 3 + b’ because S’ is a sphere with 8 holes. Using Theorem 9.2
exactly as in the case ¢ = 2,b = 1 of the proof of (ii), we conclude that 95" has at
least 10 components. The obvious contradiction completes our consideration of the
g=2,b=2 case.

Suppose now that ¢ = 2 and b = 1, i.e. S5 is a surface of genus two with one
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boundary component. In this case C' and p(C') consist of 4 components and 4 =
39/ — 44 b. So, Theorem 9.1 applies. Hence, for each component a of C' there exist
a disk with two holes P! embedded in S’ such that dP! consists of p(a) and two
components of 5. These discs with two holes are disjoint and the closure of their
complement in S is a sphere with two holes, which we denote by )’.

We may assume that C' consists of circles ay, asz, by, ¢4 presented on the Figure 7.1.
Clearly, there exists a circle e such that i(ai, e) = i(bs, €) = i(cs,€) = 1 and i(as, e) =
0. Let a be any of the circles ay, by, cs4. By our assumptions, p(t,)M = p(tM) = tf};a)
is a power of a Dehn twist along p(a). We will prove now that the element p(t,) itself
is a power of the Denh twist along p(a).

If b is a component of C, then ¢, commutes with ¢, and, hence, p(t,) commutes with
p(tM) = t%b). By the usual argument (compare the proof of the fact that " preserves
the isotopy classes of components of p(C') in the proof of (i)) this implies that p(t,)
preserves the isotopy classes of all components of p(C'). Hence, we can represent p(1,)
by a diffeomorphism H': S — S’ preserving all components of p(C'). Let R’ be the
result of cutting S’ along p(a). The surface R’ consists of two components, one of
them is a disc with two holes P! and the other is a sphere with seven holes. We denote
the second component by 7. Clearly, Q" contains ()’. Since the diffeomorphism H’
preserves p(a), it induces a diffeomorphism G’ : R — R'. Since (H')M represents
tf)\ia) = p(tM), (G"YM is isotopic to the identity. Since the two components of R’ are
not diffeomorphic, G’ preserves them both. Let G be the diffeomorphism Q" — Q"
induced by G’. By using the same theorem of Nielsen as in the proof of (i), we can
find a hyperbolic metric with geodesic boundary on Q" and an isometry F’ of this
metric isotopic to G”. In addition, we may assume that components of p(C')\ p(a) are
geodesic with respect to this metric. Since F’ together with G” and H' preserves the
isotopy classes of these components, it has to preserve the components themselves
(because F' is an isometry). This implies that F’ preserves )’ and all its boundary
components. By the same token as in the proof of (ii), this implies that F” is equal
to the identity on Q' and, hence, on the whole surface Q”. Hence, the restriction G”
of G’ to Q" is isotopic to the identity. If the restriction of G’ to P! is also isotopic to
the identity, then the diffeomorphism H’ representing p(t,) is isotopic to a power of
the Dehn twist along p(a) as claimed.

The restriction of G’ to P! preserves the boundary component of P! corresponding
to p(a). If G" is not isotopic to the identity, then it transposes two other components
(cf. for example, [FLP], Exp. 2, §III). In other words, p(t,) transposes the boundary
components of 95" contained in 9P, (and fixes other components). Since all ¢, for
a = ay, by, ¢4 are conjugate, if this is true for one of them, then it is true for the
remaining two. In this case we can label the components of 95" by the numbers
1, 2, ..., 8 in such a way that, say, p({,,) induces the transposition (12), p(ts,)
induces the transposition (34) and p(t.,) induces the transposition (56). Since t.
is also conjugate to t,,, ty,, t., (because i(as,e) = 1, e is a nonseparating circle),
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its image p(t.) also induces some transposition (i7). Now, {,t.l, = t.l,t. because
i(a,e) =1 for all a = ay, by, c4. It follows that

(12)(27)(12) = (i7)(12)(i7)
(34)(17)(34) = (i7)(34)(45)
(56)(27)(56) = (i7)(56)(i7)-

Suppose that {i,7} and {1,2} are disjoint. Then (ij) and (12) commute. Since
(12)(i7)(12) = (17)(12)(ig), this implies that {¢,7} = {1,2}. Hence {1,2} and {7, ;}
cannot be disjoint. Likewise {i, 7} and {3,4} are not disjoint and {7, j} and {5,6} are
not disjoint. But, clearly {z, j} cannot intersect three disjoint sets {1,2}, {3,4}, {5,6}
simultaneously. The contradiction shows that p(t,) fixes all boundary components of
05" for a = ay, by, c¢s. As we had seen, this means that p(t,) is a power of the Dehn
twist along p(a) for a = ay, bs, cq.

Now, we are going to use the relation ,t.t, = t.t,t. for, say, a = a; once more.
Since t. is conjugate to t,, p(f.) is a power of the Dehn twist along p(e). The
above relation implies p(t,)p(te)p(ts) = p(te)p(ta)p(te). Since p is injective, p(t,)
and p(t.) do not commute. Hence, p(a) # p(e). Thus, Theorem 4.2 implies that
i(p(a), p(e)) = 1. But since S’ is a sphere with holes, this is impossible (all circles
on S’ are separating!). The contradiction completes the proof of (iii). O

10.4. Exceptional pairs. The following pairs (5,5") will be called exceptional
pairs:

(i) S is a sphere with four holes or a torus with with one hole and S is a torus
with one hole;

(ii) S" is a sphere with five holes and S is a torus with one or two holes;

(iii) S is a sphere with six holes and S is a torus with two or three holes;

(iv) S is a sphere with seven holes and S is a torus with three or four holes;

(v) S" is a sphere with eight holes and S is a torus with four or five holes;

(vi) 5" is a torus with two holes and S is a torus with one or two holes.

This definition is motivated by Lemmas 10.2 and 10.3 and the following results.

Lemma 10.5. Suppose that the mazima of ranks of abelian subgroups of Mods and
Mods: differ by at most one. Suppose that (S,S’) is not an excluded pair. If a is a
nonseparating circle on S, then p(a) is a nonseparating circle on S.

Proof. Let C be a maximal system of nonseparating circles on S containing a and o
be the corresponding simplex of C'(.S). Let p(C') be a realization of p(c). By Lemma
10.1, p(C) is a system of circles on S” with 3g — 3 + b components. Since Dehn twists
about nonseparating circles on S are conjugate in Modg, the components of p(C') are
topologically equivalent circles on S’. Hence, the result follows from Theorems 9.1
and 9.2 and Lemmas 10.2 and 10.3. O
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Lemma 10.6. Suppose that the mazxima of ranks of abelian subgroups of Mods and
Mods: differ by at most one. Suppose that (S,S") is not an excluded pair. Suppose,
inladdition, that S is not a closed surface of genus 2. Then p(1,) is equal to L,y or
botay-

Proof. By Lemma 10.2, S’ is not a disc with two holes, a sphere with four or five
holes, or a torus with one or two holes. By assumption, S’ is not a closed surface of
genus 2.

Let C' be a maximal system of nonseparating circles containing a and let o be the
corresponding simplex of C(.5). Let p(C') be a realization of p(c). We may assume
that the circles p(a), where a runs over components of C', are components of p(C')
(the circles p(a) are well defined only to isotopy). By Lemma 10.5, these circles p(a)
are nonseparating.

By the usual argument (compare the proof of Lemma 10.3) p({,) preserves all
vertices of p(o). In particular, p(t,) preserves the isotopy class of p(a). Hence, we
can represent p(t,) by a diffeomorphism H’ : S* — S’ such that H'(p(a)) = p(a).
Let S” be the surface obtained by cutting S along p(a) and let G' : S" — S”
be the diffeomorphism induced by H'. Note that S” is connected (because p(a) is
nonseparating). Since p(t,) = p(tM) = tﬁ)\ia) is a power of the Dehn twist along

p(a), the isotopy class of G has finite order. Using the Nielsen theorem as in the
proof of Lemma 10.3 we choose a hyperbolic metric with geodesic boundary on S”
and an isometry F': S"” — S” isotopic to G'.

In addition we may assume that p(b) is a geodesic on S” for each component b of
C \ a. Together with H', the diffeomorphism G'preserves the isotopy classes of all
components p(b) of p(C')\ p(a). Since F' is an isometry isotopic to G', F' preserves
the components p(b) themselves.

Let R’ be the surface obtained by cutting S” along all circles p(b), where b runs
over components of C'\ a. Note that at the same time R’ is the result of cutting of
S" along p(C'). The number of component of p(C) is equal to the maxima of ranks
of abelian subgroups of Modg, and it differs by at most one from the corresponding
maxima for Modg/. It follows that p(C') is either a maximal system of circles on 5,
or has one circle less than such a maximal system. Hence, all components of R’ are
discs with two holes or spheres with four holes, and there is at most one sphere with
four holes among them. If there is only one component of R’ and it is a sphere with
four holes, then S’ is either a sphere with four holes, a torus with two holes or a
closed surface of genus 2. The first two cases are impossible in view of Lemma 10.2,
because (5, 5’) is not an exceptional pair. The last one is also impossible, by the
assumption of the Lemma. Hence, at least one component @' of R’ is a disc with
two holes. Since each component of C' is a nonseparating circle and S’ is not a torus
with one hole (by Lemma 10.2, in view of the fact that (.5,5’) is not an exceptional

pair), @' is embedded in S".
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If only one component of Q' corresponds to a component of p(C'), then this compo-
nent of p(C) is separating. As we had seen, all components of p(C') are nonseparating.
Hence, at least two components of dQ)" correspond to components of p(C). Recall
that F’ preserves all the components of p(C') \ p(a). In particular, F’ preserves at
least two components of @', namely, the components corresponding to components
of p(C') (here we consider )" as a subsurface of S”). If F'(Q)") # @', then F'(Q") U Q'
is a subsurface of S” with the boundary contained in the boundary of S”. Clearly,
F'(Q")UQ' = 5" in this case and, hence, S is either a sphere with four holes, a torus
with two holes or a closed surface of genus two. Since S” is the result of cutting of
S’, it cannot be closed. So, the last case is impossible. In the first two cases S is
either a torus with two holes or a closed surface of genus 2. As we had already seen,
this is impossible. Hence, F'(Q") = Q'. Because F' preserves each component of 9¢)’,
the diffeomorphism ' — Q' induced by F” is isotopic to the identity. Since F” is an
isometry, this diffeomorphism is, in fact, the identity. So, the restriction of F” on Q'
is the identity and, hence, F"' is the identity itself.

Hence, G' : S — 5" is isotopic to the identity and H' : S — S’ is isotopic to a
power of the Dehn twist along p(a). In other words, p(t,) = tﬁa) for some integer
K, which has to be nonzero, because p is injective. Since a is nonseparating circle
on S, we may choose a nonseparating circle ¢ on S such that i(a,e) = 1. Since ¢,
and t. are conjugate, p(t.) = tﬁe). Now, tylcty =ttt and, hence p(t,)p(te)p(ts) =
p(te)p(ta)p(te), ie. tﬁa)tﬁe)tﬁa) = tﬁie)tﬁa)tﬁe)- In addition, tﬁa) and tﬁe) do not
commute (because p is injective and ¢, and t. do not commute) and thus p(a) # p(e).
Hence, Theorem 4.2 implies that K = +1. (Compare the end of the proof of Lemma
10.3 (iii)). This completes the proof. O

Lemma 10.7. Suppose that the mazxima of ranks of abelian subgroups of Mods and
Modgs: differ by at most one. Suppose that S’ is a closed surface of genus 2 and S is
not a torus with two holes. Let 1 be the isotopy class of the hyperelliptic involution on

S'. Then for any nonseparating circle a on S the image p(l,) is equal to t,@.), t;(la),
-1

bo@s L p(ayt-

Proof. The maxima of ranks of abelian subgroups of Modg is 3¢ —3+b, and of Mod s
is 3. By our assumptions, 3¢ —3+b <3 <3¢g—3+b+1and3g+b<6 <3g+b+1.
Hence, S is either a torus with two or three holes or a closed surface of genus two.
The first case is excluded by our assumptions, so S is either a torus with three holes
or a closed surface of genus two. In both cases any maximal system of nonseparating
circles on S consists of three circles.

Let C' be a maximal system of nonseparating circles on S containing a and let o be
the corresponding simplex of C'(S). Let b and ¢ be two other components of C. Let
p(C) be a realization of the simplex p(c). We may assume that p(a), p(b) and p(c)
are the three components of p(C). The circles p(a), p(b) and p(c) are nonseparating
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by Lemma 10.5. It follows that p(C') separates S” into two discs with two holes, which
we denote by P’ and Q'. Both of them are embedded in S’.

By our usual argument (compare the proofs of Lemmas 10.3 and 10.6), p(t,)
preserves all vertices of p(c). Hence, we can represent p(f,) by a diffeomorphism
F' : S" — S preserving all components of p(C). Clearly, either F'(P') = P/,
F'(Q) = Q or FI'(P") = @', F'(Q") = P'. We would like to reduce our consid-
erations to the first case. To this end, recall the well known fact that ¢ can be
represented by a diffeomorphism [ : 5" — S’ preserving all components of p(C)
and such that I(P") = Q', I(Q') = P’ (compare the proof of Theorem 6.3). Put
H = F'if FI(P'") = P and H = I o F'if F'(P') = (' and consider H' instead of
F'. The diffeomorphism H' preserves both P’ and ()’ and preserves all components
of p(C') = dP" = 0Q'. Since both P’ and @’ are discs with two holes, it follows that
diffeomorphisms P" — P’, ) — @' induced by H’ are both isotopic to the identity.
This implies that H' is isotopic to a product of powers of Dehn twists about compo-
nents of p(C'). In other words, h' =, ot} ot} for some integers u, v, w, where
h' is the isotopy class of H'. By the construction, A’ = p(t,) or h' =ip(l,).

Since ¢ is a central element of order 2, it follows that

plta)" = tolay © Lol © Lo

and, hence,
= o0 = Y o 2 o

Since the circles p(a), p(b) and p(c) are pairwise disjoint and nonisotopic, this implies
that 20M = 2wM =0, i.e. v =w = 0. It follows that p(t,) = tj,) or it}

Since a is a nonseparating circle on S, we may choose a nonseparating circle e on
S such that i(e,a) = 1. Since t, and t. are conjugate, p(t.) = e if p(t,) = L) and
p(te) = ity if p(ta) = it} (remember that i is a central element). Now, t,t.t, =
tetyte and hence, p(t,)p(te)p(ts) = p(te)p(ts)p(te). Since 7 is a central element, the
last equality implies that

to@ytoe)tota) = Loyt a@ytoe)

in all cases. In addition, p(t,) and p(t.) and, hence, ) and e do not commute

(use once again that ¢ is a central element). Hence, Theorem 4.2 implies that « = +1.
This completes the proof. [

Theorem 10.8. Let S and S’ be compact connected orientable surfaces. Suppose
that S has genus at least 2 and S" is not a closed surface of genus 2. If the maxima of
ranks of abelian subgroups of Modg and Modg: differ by at most one and p : Modg —
Modg: is an injective almost twist-preserving homomorphism, then p is induced by a
diffeomorphism S — S'.
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Proof. Since the genus of S is at least 2, (.5,57) is not one of the exceptional pairs
listed above. Let a be a nonseparating circle on S. By Lemma 10.6, p(t,) is equal to
p(a) O £a)-

Suppose that p(l,) = 1,4). Since Dehn twists along nonseparating circles are
conjugate in S, it follows that p(ty) = 1,4 for every nonseparating circle b on S.
In other words, p is twist-preserving. Hence, if p(t,) = 1,(,), the result follows from
Theorem 8.9.

Suppose that p(t,) = tp_(la). Let £’ : S" — 5" be an orientation-reversing diffeo-
morphism. F’ induces an automorphism F! : Mods: — Modg. Since F’ is orien-
tation reversing, F'(t,) = t;,l(a,) for every circle o’ on S'. Let p’' = F] o p. Then
p': Mods — Modg is an injective homomorphism and p'(t,) = F,:(tp_(z))) = LF1(p(a))-
Hence, by the previous paragraph, p’ is twist-preserving. By Theorem 8.9, p’ = H!
for some diffeomorphism H' : S — S'. Thus, p = (F/)~" o H.. This implies that
p=((F')"" o H').. This completes the proof.

Note that if S is a closed surface of genus at least 2, only the easy part of the
Theorem 8.9 is actually need (cf. the first paragraph of the proof of Theorem 8.9).
In particular, we don’t need the results of Section 5 in this case. [

Theorem 10.9. Let S and S’ be compact connected orientable surfaces. Suppose
that S has positive genus and is not a closed torus. If S is a torus with one hole
suppose, in addition, that S’ is not a closed torus. Further, suppose that S’ is nol
a closed surface of genus 2 and (S,5') is not an exceptional pair. If the mazima of
ranks of abelian subgroups of Modgs and Modgs/ differ by at most one and p : Modg —
Modg is an injective almost twist-preserving homomorphism, then p is induced by a
diffeomorphism S — S’.

Proof. The proof is similar to the proof of Theorem 10.8, relying upon Theorem 8.15
rather than Theorem 8.9. O

Theorem 10.10. Let S be a compact connected orientable surface of posilive genus
Suppose that S is not a closed torus or a torus with two holes. Let S’ be a closed
surface of genus 2. Lelt 7 be the exceptional automorphism of Modgs given by the
rule T(ty) = ity, where © € Modgs is the hyperelliptic involution (cf. [M] or [12]). If
the maxima of ranks of abelian subgroups of Mods and Modg: differ by alt most one
and p : Mods — Modg: is an injective almost twist-preserving homomorphism, then
either p or T o p is induced by a diffeomorphism S — S'.

Proof. Since S is a closed surface of genus 2, (.5, 5’) is not an exceptional pair. Hence,
Lemma 10.7 applies. The proof is similar to the proof of Theorem 10.8, using Lemma
10.7 and Theorem 8.15 instead of Lemma 10.6 and Theorem 8.9. The automorphism
7 compensates for the discrepancy between Lemma 10.7 and Lemma 10.6. The details
are left to the reader. O
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11. CENTRALIZERS OF MAPPING CLASSES

In this section, S denotes a compact connected orientable surface. Let I' be a
subgroup of finite index in Modg consisting entirely of pure elements. The goal of
this section is to describe the center of the centralizer of elements of I'. The main
results are Theorems 11.6 and 11.7. To a big extent, they are contained implicitly in
[12].

For any group G and a A of G, we denote by Cg(A) the centralizer {g € G :
ga = ag for all @ € A} of Ain G. For f € GG we denote by Cg(f) the centralizer
{9 € G:gf = fg} of fin G. Finally, we denote by C(G) the center Cq(G) of G.
We are intrested mainly in subgroups C'(Cg(f)) consisting of all elements of G which
commute with every element of G commuting with f.

Lemma 11.1. Let f € T', let 0 = o(f) be the cannonical reduction system for f and
C' be a realization of 0. Then Cr(f) C I'(C).

Proof. If b commutes with f, then h(c) = h(o(f)) = o(hfh™') = o(f) = o and,
hence, h € M(o). Hence, Cr(f) CT'NM(o) =T(C). O

Lemma 11.2. Let C be a system of circles on S and let B be a subgroup of I'(C')
(¢f. 2.12 for the notations). If rc(B) is abelian, then B is also abelian.

Proof. Recall that the kernel T¢ of r¢ : M(0) — Modgs,, where o is the simplex
corresponding to C, is abelian. Hence, the kernel of r¢|B : B — Mods,. is abelian.
Since r¢(B) is abelian, this implies that B is solvable. Finally, Theorem 2.11 implies
that B is abelian. [

Lemma 11.3. Let f,h € T, let 0 = o([) be the canonical reduction system for f and
C be a realization of o. Then h € Cr(f) if and only if h € T(C) and hg commutes
with fq for every component Q of S¢ (cf. 2.3, 2.12 for notations).

Proof. If h commutes with f, then h € I'(C') by Lemma 11.1. Since h commutes with
[, hg commutes with fg for every component @) of S¢.

Suppose on the other hand, that A € I'(C) and hg commutes with fg for every
component () of S¢. Let B be the subgroup of I'(C') generated by f and h. By the
assumption, Bg is abelian for every component @) of Sc. This implies that ro(B)
is abelian. Now, Lemma 11.2 implies that B is abelian. In particular, 2 commutes
with f. This completes the proof. [

Lemma 11.4. Let f € ', 0 = o(f) and C be a realization of o. Let Q be a trivial
component of S with respect to f (cf. 2.3). Then (C(Cr(f)))q is trivial.

Proof. Let G = C(Cr(f)). If g € G, then g € T and, in particular, g is a pure
element. Since f € Cr(F), it commutes with f and, hence, ¢ € T'(C') by Lemma
11.1. Tt follows that o is a reduction system for g. In particular, gg is defined and is
a pure element of Modg by Theorem 2.9.
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Let a € V(@) and let a be a circle on @ in the isotopy class a. We may consider a
also as a nontrivial circleon S. Since a is, clearly, disjoint from C', the Dehn twist ¢, €
Mods belongs to M(o). Since I' has finite index in Modg, some power h =17, n # 0
belongs to I'(C'). Lemma 11.3 implies that A € Cr(f). Since g € G = C(Cr(f)),
g commutes with ~. Hence, gg commutes with hg. The element hg € Modg is a
nontrivial power of the Dehn twist about a on @. Hence, o(hg) = {a}. Since gg
commutes with hg, it must fix a. This implies that gg is in the kernel of the action
of Modg on V(Q). Now, Lemmas 6.1, 6.2 imply that go has finite order. It follows
that gg = 1 (because gq is pure). This completes the proof. O

Lemma 11.5. Let f € ', 0 = o(f) and C be a realization of o. Let Q be a pseudo-
Anosov component of S¢ with respect to f (cf. 2.3). Then (C(Cr(f)))q ts an infinite

cyclic group.

Proof. Let G = C(Cr(f)). By Lemma 11.1, G C I'(C') C M(o). Hence, Gg C Modg
is defined. By Theorem 2.9 G consists entirely of pure elements. Since @) is a
pseudo-Anosov component, fq is a pseudo-Anosov element. Since G is abelian, Gg
is abelian. The lemma follows now from Theorem 2.10. [

Theorem 11.6. Let f € I, 0 = o(f) be the canonical reduction system for f and C
be a realization of o. Lel ¢ be the number of components of C' and p be the number
of pseudo-Anosov components of fo. Then C(Cr(f)) is a free abelian group of rank
c+p.

Proof. Let G = C(Cr(f)). Since G C I', G consists entirely of pure elements of
Modg. Since GG is abelian, Theorem 2.11 implies that G is a free abelian group of
rank bounded above by 3g — 3 + b. It remains to determine the rank of G.

By Lemmas 11.4 and 11.5, the torsion free rank of r¢ () is bounded above by p.
Since the kernel of r¢ is a free abelian group of rank ¢, we conclude that the rank of
G is bounded above by ¢ + p.

Let fZ be the cyclic group generated by f. For a component Q of S¢ let us consider
the cyclic group f% generated by fg € Modg. Let ® be the product of groups fg
over all components ) of S¢. This product naturally lies in Modg,.; compare 2.12.
Clearly, ® is a free abelian group of rank p.

Let IT = r;' (®). Because all elements of IT are obviously pure (C is a pure reduction
system for appropriate representatives of all of them), Lemma 11.2 implies that II is
abelian. As we will see in a moment, the restriction ro | IT : 1T — @ is surjective.
Given this, the exact sequence 0 — Ty — Il — & — 0 implies that 11 is a free abelian
subgroup of rank p + c.

In order to show that Il — ¢ is surjective, let us choose a diffeomorphism F' € f
such that (F, (') satisfies condition P. For each component @) of S¢, let us extend Fg
to a diffeomorphism Fy : S — S by the identity. If fo € Mods is the isotopy class
of Fg, then rc(fg) has fg as the Q-th coordinate and 1 as all other coordinates (we
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consider r¢( fg) as an element of the product of groups Modpg over all components R
of S¢; cf. 2.12). The surjectivity follows.

Let h € Cr(f). By Lemma 11.3, h € T'(C) and hg commutes with fg for every
component () of S¢. Let B be the subgroup of I'(C') generated by IINT" and k. Clearly,
Bg is abelian for every component @) of S¢ and, hence, r¢(B) is abelian. Since the
kernel of r¢ 1s an abelian group, B is a solvable subgroup of I'. Now, Theorem 2.11
implies that B is abelian and, in particular, h commutes with all elements of II N T'.
In other words, IINT C G.

Since I' is of finite index in Modg, the intersection IIN T is a free abelian group of
the same rank p + ¢ as II. It follows that the rank of G is bounded not only above,
but also below by p + ¢. This completes the proof. O

Theorem 11.7. Let f € I', 0 = o(f) be the canonical reduction system for [ and C
be a realization of o. For any component ) of Sc, lel gg be its genus and by be the
number of boundary components. Let ¢ be the number of components of C', p be the
number of pseudo-Anosov components of Sc with respect to f and t be the sum of the
numbers 3gg — 3 + bg over the trivial components Q) of Sc. Lel any abelian subgroup
of Cr(f) is a free abelian of rank < c+r+1.

Proof. Let A be an abelian subgroup of Cp(f). Since A C Cr(f) C I, the subgroup A
consists entirely of pure elements. Hence, by Theorem 2.11 A is a free abelian group
of finite rank. By Lemma 11.3, A C I'(C'). This allows us to consider subgroups
Ag C T'(C)g C Modg for each component @ of Sc. All subgroups Ag are abelian
and, in view of 2.12, r¢(A) is naturally contained in the product of the groups Ag
over all components @) of Sc. Hence, the rank of ro(A) is bounded by the sum of
the ranks of groups Ag. Since the kernel of r¢ is a free abelian group of rank ¢ (cf.
2.1, 2.3), the rank of A is bounded by ¢ + a, where a is the above sum.

Let ag be the rank of Ag. By Theorem 2.11, ag < 399 — 3 + bg. Clearly, it is
sufficient to show that, moreover, ag <1 if () is a pseudo-Anosov component. Note
that T'(C')g consists entirely of pure elements by Theorem 2.9. Since A C Cr(f),
the group Ag is contained in the centralizer of fo in I'(C')g. Hence, Theorem 2.10
implies that ag < 1. This completes the proof. O

11.8. Remark. The bound in Theorem 11.7 is exact. We can construct a free
abelian subgroup of Cr(f) as follows. For each trivial component @ of S¢ choose a
maximal systenm of circles in ). Let D be the union of C' and all these maximal
systems. Clearly, D consists of ¢ 4+ ¢ components. Let us choose, as in the proof
of Theorem 11.6, a diffeomorhism F € f such that (F, (') satisfies condition P. For
each componet @) of S¢, extend Fy to a diffeomorphism S — S by the identity and
denote by fq its isotopy class. The group B generated by the elements fg and the
Dehn twists about components of D is, clearly, a free abelian group of rank ¢+ p+1t.
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Moreover, all elements of B commute with f. It folows that A = BNT is the required
subgroup (note that A is of finite index in B and, hence, has the same rank).

12. INJECTIVE HOMOMORPHISMS I

As in Section 10, S and S’ denote compact connected oriented surfaces. We assume
that S has positive genus and is not a torus with at most one hole and that the maxima
of ranks of abelian subgroups of Mods and Modg: differ by at most one. If S has
genus one, we assume, moreover, that maxima of ranks of abelian subgroups of Modg
and Modg: are equal and that (S5,5”) is not an exceptional pair in the sense of 10.4.
In this section p will be an injective homorphism Mods — Modg: or Modg — Mod%,.
The second case is needed only for the proof of Theorem 2 (and will be used only in
the proof of Lemma 14.1). The notion of an almost twist-preserving homorphism is
defined for the extended modular groups (i.e., in the case Mody — Mod%,/) exactly
as for the usual modular groups (cf. Section 10).

Our first goal in this section is to show that the image under p of a (sufficiently
high) power of a Dehn twist about a nonseparating circle is a multitwist about at
most two circles. Cf. Lemma 12.6. After this we study the basic properties of p when
p is not almost twist-preserving. Cf. 12.7 and Lemmas 12.8, 12.9, 12.12 and 12.13.
These properties often easily lead to a contradiction. This allows us prove Theorems
1,4, 5 and 6 of the Introduction. They appear below as Theorems 12.17, 12.14, 12.16
and 12.15 respectively.

For the remainder of this section we will denote by g¢,b (respectively ¢',b') the
genus and the number of the boundary components of S (respectively S”).

Since S has positive genus and is not a closed torus, the maxima of the ranks of
abelian subgroups of Modg is equal to 3¢ — 3 + b (cf. 2.1). Moreover, since S is, in
addition, not a torus with one hole, 3¢ — 3 + b > 2. Since p is injective, this implies
that S is not a sphere with at most four holes and not a torus with at most one
hole. In particular, the maxima of the ranks of abelian subgroups of Modg: is equal
to 3¢ — 3+ b'. Our asumptions together with the injectivity of p imply

3g+b<3¢ +b <3g+b+1.

Let us fix subgroups of finite index I', " in Mods, Modg: respectively such that
both I and I consist entirely of pure elements and p(I') C I". (It is sufficient to take
a subgroup of finite index IV in Modg: consisting entirely of pure elements and let
I' = p~(T") N Ty, where 'y is a subgroup of finite index in Mods consisting entirely
of pure elements. Cf. 2.2 for the existence of I, I'y.)

Lemma 12.1. Let H be a subgroup of a group G and let A C H. Then
Proof. We leave the (easy) proof to the reader. O
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Lemma 12.2. Let G C T be a free abelian group of rank 3g — 3 +b. If [ € G, then
rank C'(Cr/(p(f))) <rank C(Cr(f)) + 1.

Proof. Let f" = p(f). Let B be the subgroup of I generated by p(G) and C(Cr:(f"))
and let A = p(G) N C(Cr(f')). Since f € G and G is abelian, p(G) C Cr/(f'). This
implies that B is abelian. We have

rank p(G) + rank C(Cr(f')) = rank A + rank B.
Since p is injective, rank p(G) = 3g — 3 + b. Thus
3g — 3+ b+rank C(Cr/(f')) = rank A 4 rank B.
Since B C Modg/, rank B <3¢’ — 3 4+ b'. Hence,
3g + b+ rank C(Cri(f')) <rank A+ 3¢ + V.
Since 3¢’ + b < 3g + b+ 1, this implies
rank C'(Cr(f")) < rank A + 1.

By Lemma 12.1, C(Cr(f)) N p(T') € C(Cpry(f1)). Tt follows that A C C(Cory(f7)).
Since p is injective, the last group is isomorphic to C'(Cr(f)). Hence,

rank A < rank C'(Cr(f)).

The lemma follows. [

Corollary 12.3. Let f € T' be a power of a Dehn twist. Then
rank C(Cro(p(f))) < 2.

Proof. If f is a power of a Dehn twist about a nontrivial circle A, then A is a
realization of the canonical reduction system and r,(f) = 1. Hence, by Theorem
11.6, rank C'(Cr(f)) = 1. It remains to apply Lemma 12.2. O

Lemma 12.4. Let f € T be a power of a Dehn twist. Then p(f) is reducible of
infinite order.

Proof. Since f is of infinite order and p is injective, p(f) is of infinite order. Hence,
p(f) is either reducible or pseudo-Anosov.

If p(f) is pseudo-Anosov, then Cri(p(f)) is an infinite cyclic group by Theorem
12.4. Let f =17 for some n € Z and some circle a. Let C' be a maximal system of
circles containing a. Recall that T¢ is the subgroup of Modg generated by the Dehn
twists about components of C'. Thus T¢ is a free abelian group of rank 3g — 3 + b
containing f. It follows that p(T¢ N T') is also free abelian of rank 3g — 3 + b and
p(TeNI') C Cri(p(f)). Since Cri(p(f)) is infinite cyclic, this implies that 3g—34b < 1
and 3g + b < 4. Since ¢ > 1 and S is not a torus with at most one hole by the
assumptions of this section, this is impossible. Hence, p(f) is reducible. O
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Lemma 12.5. If a,b are disjoint nonseparating nonisotopic circles on S, then there
exists a nonseparating circle d on S such that i(d,a) =0 and i(d,b) # 0. Similarly, if
a, b, c are disjoint nonseparating circles on S, then there exists a nonseparating circle

d on S such that i(d,a) = i(d,b) =0 and i(d,c) # 0.

Proof. We will prove only the first assertion, the proof of the second one being com-
pletely similar. Clearly, there exists a possibly separating circle e on S such that
i(e,a) = 0 and i(e,b) # 0. By a special case of Proposition 1 from Exposé 4, Appen-
dice of [FLP] we have i(¢.(b),b) = i(e,b)®. (Compare the proof of Theorem 4.2.) Tt

follows that ¢ = ¢.(b) is the required nonseparating circle. [

Lemma 12.6. Let f € T' be a power of a Dehn twist about a nonseparating circle a.
Let C' be a realization of the canonical reduction system for p(f). Then C' has at
most two components and p(f) is a multitwist about C" (i.e., an element of Tcr).

Proof. Let " = p(f). By Theorem 11.6, C(Cr:/(f")) is a free abelian group of rank
¢ + p', where ¢ is the number of components of C” and p’ is the number of pseudo-
Anosov components of pci(f'). By Corollary 12.3, ¢ + p' < 2. Hence, ¢ < 2. This
proves the first assertion.

Lemma 12.4 implies that C” is nonempty. Suppose that p’ # 0. Then ¢ = 1 and
p' = 1. Hence, C' is a nontrivial circle on 5" and there is exactly one component P
of S¢. such that fp is pseudo-Anosov.

Suppose that P is the only component of Scr. Then g > 1. As in the proof of
Lemma 12.4, let us consider a maximal system of circles C' containing a. Then T is
a free abelian group of rank 3g — 3 4 b containing f. It follows that p(Tc NT') is also
free abelian of rank 3¢ —3 + b and p(Tc N T') C Cr(p(f)). By Theorem 11.7, rank
p(Te NT) < 2 and, hence, 3¢ —3 4+ b < 5. Since g > 1 and S is not a torus with at
most one hole, we conclude that S is a torus with two holes and, in particular, g = 1.
Hence, by the assumptions of this section, the maxima of ranks of abelian subgroups
of Mods and Modg: are equal, i.e. 3¢ —3+b = 3¢’ —3 4. This, together with ¢' > 1
implies that S’ is also a torus with two holes. But then (.5, 5") is an exceptional pair.
The contradiction with our assumptions shows that P cannot be the only component
of S¢.

Thus, C' is a nontrivial separating circle on S’. Hence, Si, has exactly two com-
ponents, P and the other component which we denote (). Moreover, fp is pseudo-
Anosov and [ is trivial.

Now, let €' be a maximal system of nonsepatrating circles on S containing a.
For each component b of (', choose a power f;, € I' of the Dehn twist about b and
let f; = p(fy). We may assume that f, is a power of f. Since Dehn twists about
nonseparating circles on S are all conjugate in Mods we may assume that all elements
f» are conjugate in Modg. It follows that the images f] are all conjugate in Mod%g
and, moreover, are all conjugate to a power of f’. Hence, for each component b of C
the canonical reduction system o( f’) can be realized by a nontrivial separating circle
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p(b) on S dividing S” into two parts P, and @), such that (f])p, is pseudo-Anosov
and (f})g, is trivial. (Clearly, (p(a), P,, Q) = (C, P, Q) and the triples (p(b), Py, Q)

are all topologically equivalent.)

The elements f{ generate a free abelian group FY, of rank 3g —3+b. It follows that
the circles p(b) can be choosen to be pairwise disjoint or equal and then the union
p(C) of these circles p(b) is a realization of a reduction system for F¢..

Let m be the number of components of p(C'). Let R}, ..., R be the components
of S;,)(C) not diffeomorphic to a disc with two holes. Every component R, 1 < <n
contains a nontrivial circle. Pick up such a circle in each R!, 1 <7 < n and consider
the union C’ of p(C') and all these circles. Then C” is a system of m + n circles on
S’. In particular, m +n < 3¢' —3 4+ V.

If m,n >3g—3+bthen m+n > 6g—6+2band, hence, 6g—6+2b <3¢’ —3+70'.
Since 3¢’ — 3+ b < 3¢9 —3+ b+ 1, this implies that 6g — 6 +2b <3g—3+b+ 1 and
39 +b < 4. Since g > 1, this means that S is a torus with at most one hole, which
is impossible by the assumptions of this section.

Hence, either m < 3¢ —3 +b,orn < 3g—3+0b. If m < 3g — 3+ b, then there
exists a pair of distinct components b,d of C' such that p(b) = p(d). Suppose that
n < 39 — 3+ b. Note that for any component b of C' the componet P, of S;)(b)
must be simultaneously a component of S, because p(C') is a realization of a
reduction system for f; € F{, and (f})p, is pseudo-Anosov. Moreover, P, contains a
nontrivial circle (because it carries a pseudo-Anosov element) and, hence, P, is one
of the components R.. It follows that P, = P; for a pair of distinct components b, d
of C. Clearly, p(b) = p(d) in this case. Hence, p(b) = p(d) for a pair of distinct
componets b, d in all the cases.

Let b,d be a pair of distinct components of C' such that p(b) = p(d). Then
{Pb, Qb} = {Pd, Qd} Hence, Pb = Pd or Qd-

Suppose first that P; = P,. Then @y = Q). By Lemma 12.5, we may choose a third
nonseparating circle e on S such that i(e,b) = 0 # i(e,d). Choose a power f. € T' of
the Dehn twist about e and let f! = p(f.). Then f; and f. commute with f, but f.
does not commute with f;. This implies that f} and f/ commute with f; and f! does
not commute with f} (the last is because p is injective). Let B be the subgroup of
[ generated by f}, f; and f!. Since the generators of B all commute with f/, they
all preserve the isotopy class of p(b). Hence, we have a reduction homomorphism
oy : B — Modpr, where R’ = S/’)(b). Since Bp, contains the pseudo-Anosov element
(fi)p, and every element of Bp, commutes with this element, Theorem 2.10 implies
that Bp, is infinite cyclic. On the other hand, since ¢y = ()4 1s a trivial component
of both r,u)(f;) and 7,4 (f), the group By, is generated by (f!)q,. Hence, Bg: is
abelian for both components @ of R’. This implies that r,u)(B) is abelian. Now,
Lemma 11.2 implies that B is abelian. In particular, f! commutes with f}, in a
contradiction with the above.
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Hence, P; = Q. Thus, the two components of R' are P, and P;. Let A = {f}, f4}
and A" = p(A) = {f}, fi}. Each element of the centralizer G = Cr/(A’) preserves
the isotopy class of the circle p(b). Hence, we have a reduction homomorphism
Ppv) : G — Modpgs. Since G'p, contains the pseudo-Anosov element (f{)p, and every
element of G'p, commutes with this element, Theorem 2.10 implies that Gp, is infinite
cyclic. Likewise, G'p, is infinite cyclic. Hence, G/ is abelian for every component Q'
of R' and, hence, r,4)(() is abelain. Hence, by Lemma 11.2, (i is abelian. Because
p maps Cp(A) injectively into G this implies that Cr(A) is abelian.

If b and d are the only components of (', then 3g —3+b =2 and 3g+b = 5. Since
g > 1, .5 is a torus with two holes in this case. By the assumptions of this section,
this implies that 3¢’ —3+b" = 2 and 3¢’ +b" = 5. Hence, S’ is either a sphere with five
holes or a torus with two holes. In both cases (5,5’) is an exceptional pair, which is
impossible by our assumptions. Hence, there exists a third component e of C'. Since
b, d and e are disjoint nontrivial circles on S, we may choose a nontrivial circle A
on S such that i(h,b) = i(h,d) = 0 # i(h,e). Then f. and f, are noncommuting
elements of Cr(A). This contradicts to the previous paragraph. The contradiction
shows that our assumption p’ # 0 is not true and, hence, proves the lemma. [

12.7. Action of p on (the isotopy classes of) circles. Let o € V4(S5) be the
isotopy class of some nonseparating circle a. Let us choose some n # 0 such that
2 € T and put p(a) = o(p(t2)). Tn fact, p(a) = o(p(22)) = o(p(ta)") = o(p(t)) by
the definition of the canonical reduction systems (cf. 2.3). In particular, p(a) does
not depend on the choice of n # 0. Let p(a) be a realization of p(«). By Lemma
12.6, p(a) consists of one or two components and p(t2) is a multitwist about p(a) (or,
what is the same, about p(a)) if t% € I',n # 0.

For o C V4(S) we define p(o) as the union of simplices p(«) over a € o, in a slight
disagreement with the usual set-theoretic notation. As we will see in a moment (cf.
Lemma 12.8), if ¢ C V5(5) is a simplex of C'(5), then p(o) is a simplex of C(S"). If C
is a system of nonseparating circles on S, then we will denote by p(C') a realization
of the simplex p(o), where o is the simplex of C'(.S) corresponding to C'. The system
of circles p(C') is well defined up to isotopy on S’.

Lemma 12.8. Let o, 3 € Vo(S). Then i(a,3) = 0 if and only if i(p(a), p(B)) = 0.
If o C Vo(S) is a simplex, then p(o) is a simplex.

Proof. Clearly, the second assertion follows from the first one. In order to prove the
first assertion, let us choose m,n # 0 such that ¢, 13 € . Let f, =1}, fs = 7.
If i(a, ) = 0, then f, commutes with fz by Theorem 4.2 and, hence,

p(f3)(p(a)) = p(f3)(o(p(fa))) = o(p(fa)p(fa)p(fa)™") =
= o(p(fafal51)) = o(p(fa)) = pla).
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By combining this with Theorem 2.7 we see that p(f3) fixes all vertices of p(«). For
such a vertex y € p(a) let us choose k # 0 such that t¥ € . Since p(f3)(y) = 7, we
have

1k _ 4k

p(fe)(v) — "
and p(fa)tEp(fs)™" = t5. In other words, t& commutes with p(fs). Arguing as above,
we can deduce from this that ¥ commutes with some nontrivial power t§ € T",1 # 0 of
ts for any § € p(f). Now, Theorem 4.2 implies that i(y,d) = 0 for any v € p(a),d €
p(B). Hence, i(p(a), p(8)) = 0. Conversely, if i(p(a), p(3)) = 0, then p(f,) and p(f3)
commute because they are multitwists about p(a) and p(3) respectively, in view of
Lemma 12.6. Since p is injective, in this case f, and f3 commute. Hence, i(a, 3) = 0

by Theorem 4.2. [

Lemma 12.9. [f p is not almost twist-preserving, then p(«) is an edge of C'(S') for
any o € Vp(9).

Proof. If «, 3 € Vu(5), then t,, tg are conjugate in Mods. Hence, for appropriate
n # 0, the powers {7, 1% are both in I' and are conjugate in Mods. Then p(17%), p(13)
are conjugate in Modg, and, hence, p(a) and p(3) are equivalent under the action of
Mod%,. It follows that either all p(a), a € V5(S) consist of one vertex, and in this
case p is almost twist-preserving, or all p(«), a € V5(S) consist of two vertices, i.e.

all p(«) are edges of C'(S5'). O

Lemma 12.10. Suppose that p is not almost twist-preserving. Let a, 8 € Vo(S). If
i(a,3) =0 and o # 3, then p(a) U p(3) as a triangle of C(S"). In particular, p(o)

and p(3) have a unique common vertex.

Proof. Clearly, {a, 8} is a simplex of C'(S). In view of Lemma 12.8, this implies that
o(0) Up(8) = p({ex, B}) is a simplex of C(S')

Suppose that p(a) = p(3). Let C’ be a realization of p(a) and let R' = S¢,. In
view of Lemma 12.5 we may choose a vertex § € V4(S5) such that (4, ) = 0 and
i(6,8) # 0. Let f,, fz and fs € ' be some nontrivial powers of Dehn twists about
a, 3 and 0 respectively. Then fg and fs commute with f, but f5 does not commute
with fs. Let fl = p(fa), f5 = p(fs) and f; = p(fs). Clearly, f; and f; commute
with f! but f does not commute with fj (the last is because p is injective). Let
G be the subgroup of I" generated by f!, f; and f;. Since the generators of G all
commute with f!. they all preserve p(a) = o(p(fa))-

Hence, G C M(p(a))NT" =T"(C") (cf. 2.12 for the notations) and we can consider
the reduction homomorphism rc/|G 2 G — Modp. Since f/, and fj are multitwists
about p(a) = p(3), the reductions r¢i( f) and ro( fj) are both trivial. Thus re/(G) is
generated by rci(ff). Hence, rei(G) is cyclic and, in particular, abelian. By Lemma
11.2, G is abelian. In particular, fi commutes with fj in a contradiction with the
above. Hence, p(a) # p(5).
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Suppose now that p(a)Np(3) = 0. Again, let f,, fs € I' be some nontrivial powers
of Dehn twists about a, respectively. Let h = f,fs and A’ = p(h). Note that
h € Te N T, where C' is some maximal system of circles such that the corresponding
simplex contains a and 3. The group Tc NI is a free abelian group of rank 3g—3+b,
because T¢ is such a group and I' is of finite index in Mods. Hence, Lemma 12.2
implies that

(12.1) rank C(C’f(h')) < rank C'(Cr(h)) + 1.

Clearly, {a, 3} is the canonical reduction system for A and h is a multitwist about
{a, 8}. Hence, Theorem 11.6 implies that rank C(Cr(h)) = 2.

Another application of Theorem 11.6 shows that rank C(C[(h')) = 4 (note that
a(h") = p(a)Up(B)). Contradiction with (12.1) shows that the intersection p(a)Np(3)
cannot be empty. Thus, the edges p(«) and p(3) are not disjoint and not equal. This
means that the simplex p(a) U p(3) has exactly three vertices and the edges p(a) and
p(B) have exactly one common vertex. [J

Lemma 12.11. Suppose thal p is not almost twist-preserving. Let {a, 3,7} C Vo(.5)
be a simplex of C(S). Then p(a) N p(B) = p(B) N p(y) = p(7) N pla).

Proof. Of course, it is sufficient to prove that p(a) N p(B) = p(a) N p(7y). Note that
by Lemma 12.9 p(«), p(3) and p(7v) are edges of C'(S’). By Lemma 12.10 each pair of
these edges has exactly one common vertex. Let {o/} = p(8)Np(7), {3’} = p(a)Np(7)
and {y'} = p(a) N p(B).

Suppose that 8" # +'. Then p(a) = {67}, because 5,7 € p(a). Moreover,
o' # (3" in this case, because otherwise ' = o € p(8) and 4" € p(3) and, hence,
p(a) and p(3) have two common vertices 3,4 in a contradiction with Lemma 12.10.
Similarly, o' # +' in this case. It follows that if 8" # +', then p(a) = {5,7'},
o(3) = {o/, '} and p() = {a, '}

Lemma 12.5 implies that there exists § € V5(.5) such that ¢(é, a) = ¢(4, 8) = 0 and
i(6,7) # 0. As usual, let f,, fs, f, and fs € T' be some nontrivial powers of Dehn
twists about a, 3,7 and § respectively. Since i(d,a) = 0, the elements f5 and f,
commute. It follows that p(fs) and p(f,) commute and, and, since p(a) = o(p(fs)),
that p(f5)(p(«)) = p(a). Because p(a) consists of only two vertices, this implies that
p(f2) = p(f5)? fixes both vertices of p(a). In particular, p(f2)(8') = 3. Similarly,
i(6,3) = 0 implies that p(fZ)(a’) = . since p(f,) is a multitwist about p(y) =
{a’, 3} in view of Lemma 12.6, it follows that p(f#) commutes with p(f,). Since p is
injective, this implies that f7 commutes with f,. By Theorem 4.2 this implies that
i(0,7) = 0 in a contradiction with the above.

Hence, our assumption that 8’ # 4’ is not true. In other words, #’ = 4" and
pla) Np(y) = p(a) N p(B). This completes the proof. [

Lemma 12.12. Suppose that p is not almost twist-preserving. Lel o be a simplex of
C(S) contained in Vo(S) and having at least two vertices. Then there exists a unique
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isotopy class p, € V(S') such that p, € p(a) for each a € 0. If a, 3 € 0 and o # 3,
then {p,} = p(a) N p(B).

Proof. Let a,3,7,8 € 0 and a # 3, v # ¢. If {a,3} and {v,d} have a common
element, then p(a) N p(B) = p(v) N p(d) by Lemma 12.11. Otherwise, p(a) N p(B3) =
pla) N p(y) = p(v) N p(d), again by Lemma 12.11. In addition, for any «, 5 € o,
a # [ the intersection p(a) N p(3) consists of exactly one vertex, by Lemma 12.10.
So, we can take p, to be this vertex. [

Lemma 12.13. If p is nol almost lwist-preserving, then 3¢’ +b = 3g+b+1. Hence,
the mazima of ranks of abelian subgroups of Mods: is bigger by one than the maxima
of ranks of abelian groups of Mods.

Proof. Let C be a maximal system of nonseparating circles on S and ¢ be the corre-
sponding simplex. Let p(C') be a realization of p(o). By Lemma 12.9, all p(a),a € o
are edges. By Lemma 12.12 there is one vertex common to all these edges, and the
remaining vertices of these edges are all distinct. This implies that the union p(o) of
these edges has one more vertex than o. Hence, p(C') has 3g—3+b+1 = 3g—2+b com-
ponents. Since p(C') is a system of circles on S’, this implies that 3¢—2+b < 3¢’ —3+b'
and 3g + b+ 1 < 3¢’ + . On the other hand, as we noticed in the beginning of this
section, 3¢’ + b < 3g + b+ 1. The lemma follows. [

Theorem 12.14. Let S and S" be compact connected orientable surfaces. Suppose
that S has positive genus, S is not a torus with at most one hole, S" is not a closed
surface of genus 2 and (S,S5") is not an exceptional pair. If the mazima of ranks
of abelian subgroups of Mods and Modg: are equal and p : Mods — Modgs ts an
injective homomorphism, then p is induced by a diffeomorphism S — S’.

Proof. By Lemma 12.13, p is almost twist-preserving. Hence, the result follows from

Theorem 10.9. O

Theorem 12.15. Let S be a compact connected orientable surface of positive genus.
Let S" be a closed surface of genus 2. Let T be the exceplional aulomorphism of
Modg:. If the maxima of ranks of abelian subgroups of Mods and Modgs are equal
and p : Mods — Modg ts an injective homomorphism, then either p or 7o p is
induced by a diffeomorphism S — S'.

Proof. Since S is a closed surface of genus two, (5,5’) is not an exceptional pair.
Since 3g — 34+ b =3¢g' — 3 + b = 3 by the assumption, S is not a torus with at most
two holes. By Lemma 12.13, p is almost twist-preserving. The result follows now
from Theorem 10.10. O

Theorem 12.16. Let S be a compact connected orientable surface of genus at least
2. Let S" be a closed surface of genus 2. Lel T be the exceptional outer automorphism
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of Modg:. If p: Mods — Modg: is an injective homomorphism, then either p or Top
is induced by a diffeomorphism S — S'.

Proof. Since g > 2, we have 3g + b > 6. On the other hand, 3¢’ + ' = 6 and
39 +b< 3¢ 4+ b, as we noticed in the beginning of this section. Hence, g = 2 and

b =0, i.e., 5 is a closed surface of genus two. Now the result follows from Theorem
12.15. O

Theorem 12.17. Let S be a compact connected orientable surface of positive genus.
Suppose that S is not a torus with at most two holes. Then Modgs is co-Hopfian.

Proof. Let 8" = S. The assumptions on S imply that (.5, .5") is not an exceptional pair.
Hence, if S is not a closed surface of genus two, the result follows from Theorem 12.14.
Otherwise, the result follows from Theorem 12.15. This completes the proof. [

13. INJECTIVE HOMOMORPHISMS 11

As in Section 12, S and 5" denote compact connected oriented surfaces. In this
section we assume that the genus of S is at least two, S’ is not a closed surface of
genus two and that the maxima of ranks of abelian subgroups of Mods and Modg:
differ by at most one. As in Section 12, we will denote by g, b (respectively ¢, ') the
genus and the number of the boundary components of S (respectively S"). As usual,
let p: Mods — Modg be an injective homomorphism.

The goal of this section is to prove Theorem 3 of the Introduction. It appears
below as Theorem 13.7. In addition, we prove a nonsplitting result for modular
groups, which follows easily from Theorem 13.7. Cf. Theorem 13.8. We will continue
the line of arguments started in Section 12. Note that since S is of genus at least two
(in particular, (5,5’) is not an exceptional pair), all results of Section 12 are valid
under our current assumptions. In particular, we may use the notations introduced
in 12.7. As we saw in Section 12, if p is not almost twist-preserving, then p(«) is an
edge of C'(5’) for any a € Vo(5) (cf. Lemma 12.9). Moreover, if o is a simplex of
C'(S) contained in V5(5) and having at least two vertices, then there is one vertex
common to all edges p(a), a € o, and the other vertices of these edges are all distinct
(cf. Lemma 12.12). As in Lemma 12.12, we will denote this unique common vertex

by p.

Lemma 13.1. Suppose that p is not almost twist-preserving. Let C' be the maximal
system of circles introduced in 7.1, and lel o be the simplex of C(S) corresponding to
C'. Then p(PModgs) is contained in the stabilizer of p, in Modg.

Proof. All components of C' are obviously nonseparating. Hence, o C V5(5). Also,
(' has 3¢ — 3 + b components and ¢ > 2. Hence, o has at least three vertices. In
particular, p, is indeed well defined.

Recall that p(a) = o(p(ts)) for any o € Vo(S) (cf. 12.7). It follows that p(a) is
invariant under p(t,). In addition, if i(a, 3) = 0, then t,tst5" = {5 and p(ta)(p(8)) =
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p(ta)(o(p(ts))) = alp(ta)p(tp)p(la)™) = olp(latsts’)) = alp(ls)) = p(B). So, if
i(a, ) = 0, then p(3) is also invariant under p(t,).

If we apply these remarks to two vertices a, 3 € o, we conclude p(t,) preserves
both p(a) and p(3). Since p, is the unique common vertex of p(a) and p(3) by
Lemma 12.12, it follows that p, is preserved by p(t,). Thus p, is preserved by all
p(ts), a € 0.

Now, let 3 be the isotopy class of one of the dual circles of the configuration C; cf.
7.1. We would like to prove that p, is preserved also by p(3).

Since g > 2, there exist two distinct vertices «,y € o such that i(a,3) = 1 and
i(y,3) = 0; cf. Figure 7.1. In view of the above remarks, p(c) and p(y) are invariant
under p(t,). Also, p(t,) fixes p, and p, is the unique common vertex of edges p(«),
p(7) (by Lemma 12.12). It follows that p(t,) fixes each vertex of p(a) and p(v). In
addition, p(v) is invariant under p(tg) because i(y,3) = 0. Now, t,lgt, = lgtats by
Theorem 4.2 and, hence, p(1,)p(tg)p(ta) = p(ta)p(ta)p(ts). Since p(t,) is equal to
the identity on p(vy) and p(7) is invariant under p(tz), the last equality implies that
p(tg) also equal to the identity on p(v). In particular, p(ig) fixes p, € p(7).

Since the configuration C' consists of the components of C and the dual circles (cf.
7.1, we have shown that p, is fixed by the images under p of the Dehn twists along
all circles of the configuration C. Hence, the result follows from Theorem 7.3. [

Lemma 13.2. Suppose that p is not almost twist-preserving. Let C' be the maximal
system of circles introduced in 7.1, and lel o be the simplex of C(S) corresponding to

C. Then p, € p(y) for all v € V5(S).

Proof. Let v € V4(S5) and a € o. Since both a and 7 are the isotopy classes of
nonseparating circles, f(a) = v for some f € PMods. Thus, ft,f™" = ¢, and
p(N)p(e)) = p(f)(o(p(ta))) = o(p(f)p(ta)p(f)™") = o(p(flaf7")) = o(p(ly)) =
p(7). Because p, € p(a) by the definition of p, (cf. Lemma 12.12), this implies that

p()ps) € p(v). On the other hand, p(f)(ps) = ps by Lemma 13.1. The lemma
follows. O

Lemma 13.3. Suppose that p is not almost twist-preserving. Let C' be the maximal
system of circles introduced in 7.1, and lel o be the simplex of C(S) corresponding to
C. Then p(Mods) is contained in the stabilizer of p, in Modg.

Proof. If o, 3 € V5(S), a # 3 and i(a, 8) = 0, then p(a) and p(3) have a unique
common vertex by Lemma 12.12 (namely, p,, where 7 = {a, #}). Lemma 13.2 implies
that this common vertex is equal to p, for all such a, 3.

Now, let us choose such a pair a,3. Let f € Mods. Then ~,d, where v =
a),6 = f(B), is another such pair. Thus, p, is the unique common vertex of

/T
(7); 9(5) On the other hand, p(f)(p(a)) = p(f)(o(p(la))) = o(p(f)p(ta)p(f)") =
((J,(zg h) = a(p(t ) = p(’y) and, similarly, p(f)(p(3)) = p(d). It follows that

maps the unique common vertex of p(a) and p(3) into the unique common

Q>

p
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vertex of p(v) and p(d). Since both of them are equal to p,, we have p(f)(ps) = po-
This completes the proof. O

Lemma 13.4. Suppose that p is not almost twist-preserving. Let o be the simplex
of C(S) considered in Lemmas 13.1—13.3. Let z be some circle on S in the isolopy
class p, and let R' = S! be the result of culting S" along =.

(i) If z is nonseparating, then R’ is a connected surface of genus ¢ — 1 with b’ + 2
boundary components.

(i) If z is nonseparating, then R’ is a connected surface of genus ¢' — 1 with b’ 4 2
boundary components. If z is separating, then R’ consists of lwo components. One
of them is a disc with two holes, and the other is a connected surface of genus g' with
b — 1 boundary components.

Proof. (i) This part of the lemma is obvious.

(ii) For any o € V5(5) we can realize p(a) by a system of circles having z as one
of the two components, because p, € p(a) by Lemma 13.2 (there are exactly two
components by Lemma 12.9). Let us denote by C(a) the other component of this
system of circles.

It follows from Lemma 12.8 that i(a, #) = 0 if and only if (C(«),C(3)) = 0. In
particular, if i(a, 3) # 0, then i(C(a),C(3)) # 0 and, hence, C'(a) and C(f) are
contained in the same component of R'.

Now, note that for any two vertices a, 8 € V5(5) there exists a vertex v € V5(.5)
such that 7(a,v) # 0 and (v, 3) # 0. For example, it is sufficient to take v = f(v/),
where [ is pseudo-Anosov element, 4" € V4(S) and N is sufficiently big. It follows
that C(a) and C(f) are contained in the same component of R’ (namely, in the
component containing C'()). Thus all circles C(a),a € V5(S) are contained in the
same component of R'.

Let us consider now some maximal system of nonseparating circles on S and
the corresponding simplex 7 in C(S). For any two vertices a,3 € 7 we have
i(C(a),C(B)) = 0 (because i(a,3) = 0). Hence, we may assume that circles
C(a),a € T are pairwise disjoint. By Lemma 12.12, these circles are pairwise non-
isotopic and none of them is isotopic to z. Hence, circles C'(a), o € 7 together with z
form a system of circles on S’. It has 3¢ —3+b+4+1 = 3g — 2+ b components, because
7 has 3¢ — 3 + b vertices. On the other hand, 3¢ —2 4+ b = 3¢’ — 3 + b by Lemma
12.13. Hence, this system of circles is a maximal system of circles on S’. Since all
components of this maximal system of circles other than z are contained in the same
component of 57, the other component of S, is a disc with two holes.

So, we proved that one of the components of R = S is a disc with two holes.
Obviously, this implies that the other component has genus ¢’ (the same as S’) and
b — 1 boundary components. This completes the proof. [
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Lemma 13.5. Let () be a compact connected orientable surface, ¢ be a nontrivial
circle on Q and R = Q.. Let M(c) be the stabilizer in Modg of the isotopy class of
c.

(i) If ¢ is nonseparaling, then the kernel of the reduction homorphism r. : M(c) —
Modg is an infinite cyclic subgroup contained in the center of M(c).

(ii) If ¢ divides @ into two parts P and Py such that Py is a disc with two holes and
P is not a disc with two holes, then Modpg fizes the component P of R and the kernel
of the composition mpor. : M(c) — Modp is an infinite cyclic subgroup contained in

the center of M(c).

Proof. (i) The kernel of r. is generated by the Dehn twist ¢, about ¢, which is clearly
central in M(c) (cf. 2.3). This proves (i).

(ii) Since P and Py are not diffeomorphic, Modg fixes both components P and Py of
R. This implies that mpor. is well defined (formally, r.(M(c¢)) C Modgr = Modg(P)).

Every element of the kernel of mp o r. obviously can be represented by diffeomor-
phism F': Q) — @ equal to the identity on P. Such a diffeomorphism F' is uniquely
defined by the induced diffeomorphism Fy : Py — Fy. Clearly, Fy is equal to the
identity on the component ¢ of the boundary dF,, but may interchange two other
boundary components. Moreover, any diffeomorphism Py — Fy equal to the identity
on ¢ can arise in this way. The group G of such diffeomorphisms Py — Fy, consid-
ered up to isotopies fixed on ¢, is known to be infinite cyclic: it is generated by the
so-called half-twist about ¢; the square of this generator is a Dehn twist about ¢. The
obvious map from this group GG to the kernel of mp o r. is surjective by the above
remarks; it is injective because its restriction to the infinite cyclic subgroup of powers
of the Dehn twist about ¢ is obviously injective. It follows that the kernel of mp o r,.
is infinite cyclic.

Finally, any element of M(c) can be represented by a diffeomorphism F': @ — @
preserving ¢. Such a diffeomorphism preserves sides of ¢, because P and F, are not
diffeomorphic, and, hence, preserves the orientation of ¢ (because F' is orientation-
preserving). Therefore, replacing F' by an isotopic diffeomorphism if necessary, we
may assume that F'is equal to the identity on ¢. Now, the description of the kernel of
Tpor., given in the previous paragraph (and, in particular, the fact that G is abelian)
implies that the isotopy class of F' commutes with all elements of this kernel. Hence,
the kernel of 7p o 1. is contained in the center of M(c). O

Lemma 13.6. Suppose that p is not almost twist-preserving. Let o be the simplex
of C(S) considered in Lemmas 13.1—13.3. Lel z be some circle on S in the isolopy
class p, and let R = S, be the resull of cutlting S" along z.

If z is nonseparating, let P' = R’.

If z is separating, then there is a unique component of of R’ which is not a disc
with two holes. Let us denote by P’ this component.
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In both cases Modgs fizes the component P of R' and thus the induced homomor-
phism p' = mpiror,op: Mods — Modp: is well defined. Moreover, p' is an injective
almost twist-preserving homomorphism.

Proof. First, note that r, o p is well defined because p(Modg) is contained in the
stabilizer of p, by Lemma 13.3.

If z is nonseparating, then P’ = R’ and mp: = id. It follows that p’ = r, 0 p and so
p" is well defined.

If z is separating, then one of the components of R’ is a disc with two holes by
Lemma 13.4. The other component cannot be a disc with two holes, because it has
genus ¢’ and b’ — 1 boundary components by Lemma 13.4 and 3¢’ +b6' —1 =3g+b > 6
by Lemma 12.13 and the assumption g > 2. So, one component of R is a disc with
two holes and the other is not. It follows that Modg: fixes both components of R’.
Hence, p' = mpi or, o p is, indeed, well defined.

It remains to prove that p’ is injective and almost twist-preserving.

The kernel of p' is isomorphic via p to the intersection of p(Mods) with the kernel
of mpror,. If z is nonseparating, then wp:or, = r, and, hence, the kernel of wp:or, is
infinite cyclic by Lemma 13.5 (i). If z is separating, then the kernel of wp/or, is infinite
cyclic by Lemma 13.5 (ii). It follows that the kernel of p’ is a subgroup of an infinite
cyclic group and thus is either trivial or infinite cyclic group. Since no infinite cyclic
subgroup of Mod g can be normal (this follows easily from the Thurston’s classification
of elements of Modg; alternatively, one may use [I3], Exersices 5.a, 5.b and Lemma
9.12), the kernel of p’ is trivial.

So, p' is injective. If o € V5(9), then p(12) is a multitwist about p(a) for some
n # 0; cf. 12.7. Since p(«a) consists of two vertices and one of them is the isotopy
class p, of z (by Lemma 13.2), it follows that r,(p(12)) is a power of a Dehn twist
(about a circle representing the other vertex). Hence, mpi(r.(p(t2))) is a power of a
Dehn twist. This proves that p’ = wpr or, 0 p is almost twist-preserving and, hence,
completes the proof. O

Theorem 13.7. Let S and S’ be compact connected orientable surfaces. Suppose
that the genus of S is at least 2 and S is not a closed surface of genus 2. Suppose
that the maxima of ranks of abelian subgroups of Mods and Modg: differ by at most
one. If p : Mods — Modg is an injective homorphism, then p is induced by a
diffeomorphism S — S’.

Proof. In view of Theorem 10.9, it is sufficient to consider the case when p is not
almost twist-preserving.

Let o be the simplex of C'(S) considered in Lemmas 13.1—13.4 and 13.6. As in
Lemma 13.6, let z be some circle on S in the isotopy class p, and let R = S..
Let P’ be the component of R’ introduced in Lemma 13.6. By Lemma 13.6, the
homomorphism p’ = wpr o1, 0 p: Mods — Modp: is well defined and is an injective
almost twist-preserving homomorphism. In addition, Lemma 13.4 implies that the
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maxima of ranks of abelian subgroups of Modp: is one less than the maxima of ranks
of abelian subgroups of Modg/ and, hence, is equal to the maxima of ranks of abelian
subgroups of Modg (it cannot be less than this maxima for Modg, because p’ is
injective). This means, in particular, that Theorem 10.9 applies to p’ and implies
that p’ is induced by some diffecomorphism H : S — P’

In the remaining part of the proof we will use the notations (and the results) of
Section 5.

If F: S — S"is a diffeomorphism fixed on 9.5, then the diffeomorphism HoFoH ™! :
P" — P’ gives rise to a diffeomorphism S” — 5’ by the glueing in the case when z is
nonseparating (note the H o F'o H™" is fixed on 9P ) and by the extending by the
identity in the case when z is separating. By passing to the isotopy classes, we get a
homomorphism Mg — Mg induced by H. We will denote it by H.. (Compare the
proof of Theorem 8.9.) By choosing the orientations of S and S’ appropriately, we
may assume that H is orientation-preserving. Then H,({.) = fH(c) for any circle ¢ on
S. As in the proof of Theorem 8.9, let us consider the following diagram.

H,
Ms —_— Msl

| |¥
PMods —2— Mods

The vertical maps are the canonical homomorphisms p : Mg — PModg, p/
Mg — Modg. Note that we cannot claim that this diagram is commutative. But in
fact it is quite close to being commutative. Namely, the compositions mpior, op’ o H,
and mpror,opop: Mg — Modp: are equal, because p’ = wp: 01, 0 p is induced by
H. Therefore, p' o H.(f) and p o p(f) differ by an element of the kernel of mp/or,
for any f € Mg. By Lemma 13.5, this kernel is an infinite cyclic group, contained
in the center of M(z), where M(z) is the stabilizer in Modgs of the isotopy class of z
(i.e., of p,). We will denote this kernel by K.

Let us consider the Dehn twist I, € Mg, where ¢ is a boundary component of S
corresponding to z under H. By Theorem 5.3 the element {. € Mg belongs to the
commutator subgroup of Mg. (Here we use the assumption that the genus of S is at
least 2 in a crucial way.) In other words,

f[ Lfi, gil,

for some fi;,g; € Ms, 1 < i < n, where [f, g] denotes the commutator fgf~'g".
Now,

P (ine) = p(Hdl:) =

=p o H.(l.) =p o H. (H[f“gz]) =

=1

~~
™

I
’U\
—~

Nt
™
S—

I
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H plo Ho(fi),p' o Hogi)] =

_H p o p(f:)ki, p o plg:)li]

for some k;,[; € K, 1 <1 < n by the discussion in the previous paragraph. Since
p(PMods) is contained in M(z) by Lemma 13.1 and K is contained in the center of
M(z), as we noticed above, the last expression is equal to

n

[Llp o p(f:),p 0 plgi)] = pop(I[fi,9]) =
=1 =1
=pop(le) =p(1) =1
(since ¢ is a boundary component, p(i.) = 1). We conclude that ¢, = 1, contradicting
to the fact that z is a nontrivial circle.
Thus the assumption that p is not almost twist-preserving leads to a contradiction.
In view of the above, this completes the proof. [

Theorem 13.8. Let S be a compact connected orientable surface of genus at least 2
with one boundary component. Then the nalural surjective homomorphism Mg —
PModgs is nonsplit, where Mg is the group of isotopy classes of diffeomorphisms
S — S fized on 05, with respect to isotopies fized on 0S (cf. Section 5).

Proof. Note that PMods = Modg, because S has one boundary component. If Mg —
PModg splits, then there is an injective homomorphism 6 : Mods — M.

Let S’ be the surface obtained from S by attaching a disc @) with two holes to
0S5 along a component C' of dQ). Then S5’ is not a closed surface of genus 2 and the
maxima of ranks of abelian subgroups of Mods and Modg: differ by one.

Each diffeomorphism F' : S — S which is fixed on 0S5 extends by the identity to
a diffeomorphism F' : 5" — §’. This extension also applies to isotopies of S which
are fixed on 0S. Hence, it induces a natural homomorphism 1 : Mg — Modg. It is
well known that 5 is injective. (This can be easily established by reducing along C'.)
Now, the composition nf is an injective homomorphism p : Mods — Modg. But,
by Theorem 13.7, this is impossible. Hence, the homomorphism Mg — PModg is
nonsplit. [J

14. PROOF OF THEOREM 2

In this section we deduce Theorem 2 of the Introduction from Theorem 13.7 (i.e.,
from Theorem 3 of the Introduction). Cf. Theorem 14.2.

Lemma 14.1. Let S, S’ be a pair of surfaces satisfying the assumptions of the first
paragraph of Section 12. If p : Mods — Mod%, is an injective homomorphism, then
p(Mods) C Modg:.
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Proof. Suppose that, to the contrary, p(Modg) is not contained in Modgs. Since Modg
is generated by the Dehn twists about nonseparating circles, in this case p(t,) €
Mod%, \ Modg for some o € V5(5). In other words, p(t,) is an orientation-reversing
element for some a € V5(5). Let us fix such an a.

Suppose first that p is almost twist-preserving. Then p(tY) = tg/(fa) for some
MN £ 0. Clearly, p(a) = o(p(t))) = o(p(talN1=1)) = o{p(t)p(EN)p(t) ) =
p(ta)(a(p(tY)) = p(ta)(p(e)). Thus p(t,) preserves the isotopy class p(a) and, since
p(l,) is orientation-reversing, we have p(ta)tf)v(fa)p(ta)‘l = t;(]g). On the other hand,
p(t,) obviously commutes with p(tY) = ti)\/(fa). Hence, we have a contradiction in this
case and, so, p cannot be almost twist-preserving.

If p is not almost twist-preserving, then p(v) is an edge of C'(S”) for any v € V5(5)
in view of Lemma 12.9. Let us choose 8 € V5(.5) such that i(8,«) = 0 and § # a.
Then p(a) and p(3) have a unique common vertex by Lemma 12.10. Since p(t,)
commutes with both p(t)) and p(t}) for any N, the image p(t,) preserves both p(a)
and p() and, hence, fixes the unique common vertex of p(a) and p(3). It follows
that p(t,) fixes all the vertices of p(a) and p(3) (because p(a) and p(3) are edges).
Now, p(1%) is a multitwist about p(a) for some n # 0 (cf. 12.7). Thus p(I7) = 117"
for some [,m # 0, where 7,0 are the vertices of the edge p(«). Because p(t,) fixes
both v and ¢ and p(t,) is orientation-reversing, we have ,()(If@)tlW Tp(te)™t = t;lt{;m.
On the other hand, p(t,) obviously commutes with p(17) = t/17". We again reached
a contradiction. This completes the proof. [J

Theorem 14.2. Let S be a closed orientable surface of genus al least 2. Then there
is no injective homomorphisms Out(m(S)) — Aut(m(S5)). In particular, the natural
epimorphism Aut(m(S)) — Out(m(S)) is nonsplit.

Proof. Let x be a basepoint on 5. Since the genus of S is at least two, the center of
m (S, x) is trivial. Hence, we have a short exact sequence:

1 — m(S,x) N Aut(mi(S,z)) — Out(m (S, z)) — 1,

in which @ maps an element a € m;(S, z) into the inner automorphism g + aga™'.
Let Diff(S) denote the group of diffeomorphisms S — S and let Diff(.S, ) denote
the group of diffeomorphisms S — S fixing the basepoint x. Let S’ be a compact
connected orientable surface of the same genus as S and with one boundary com-
ponent. Clearly, there exists a map (5',05") — (S5, z) inducing a diffeomorphism
S"\ 05" — S\ {z} and collapsing the boundary 05’ to the point z. By using
such a map we may identify S with the surface obtained from S’ by blowing down
the boundary 05’ to a point. This identifucation induces a natural isomorphism
Modg — mo(Diff(S, 2)). In addition, Modg = mo(Diff(S)), simply by the definition.

According to Theorem 4.3 of [B], we have a short exact sequence:

1 — m (S, 2) 2 mo(Diff(S, z)) — mo(Diff(S)) — 1.
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The kernel of the homomorphism mo(Diff(S, z)) — mo(Diff(S)) corresponds to dif-
feomorphisms F' : (S,2) — (S, ) which are isotopic to the identity, but not nec-
essarily by an isotopy fixing x. Under such an isotopy, = travels around a loop
v in S. The inclusion m(S,z) — mo(Diff(S,2)) maps the homotopy class of v
to the isotopy class of F' (with the basepoint z assumed to be fixed during the
corresponding isotopies) and the action of F on m(S,z) is given by the conju-
gation by the homotopy class of 7. The composition of the natural homomor-
phism 7mo(Diff (S, z)) — Aut(m;(S)) with the natural homomorphism Aut(m(S5)) —
Out(m(5)) factors through mo(Diff(S,z)) — mo(Diff(S)) to provide a natural ho-
momorphism mo(Diff(S)) — Out(m(S)). According to the Baer-Nielsen Theorem
(cf., for example, [Z] Corollary 11.7), mo(Diff(S)) — Out(m(S)) is an isomorphism.
It follows that, as is well known, Mods = mo(Diff(5)) is naturally isomorphic to
Outlm(S)).

The above discussion is summarized by the following commutative diagram:

1 —— m(S,2) —2 mo(Diff(S,2)) ——  mo(Diff(5)) — 1

L | | |

1 —— m(S,2) —2— Aut(m(S,z)) — Out(m (S, z)) — 1

(the commutativity of the square involving the maps d follows from the description
of these maps given above). By the preceding discussion, the horizontal rows of
this diagram are exact and the two left-hand and the two right hand vertical ar-
rows are isomorphisms. Hence, the vertical arrow in the middle of the diagram is
also an isomorphism. Thus, we have a natural identification of the homomorphism
Aut(m(S)) = Out(m(5)) with the homomorphism mo(Diff (S, z)) — mo(Diff (S)). In
view of the above, the last homomorphism can be identified with a homomorphism
Mod’ — Mod5.

Suppose that there exist an injective homomorphism Out(m;(.S)) — Aut(m(.5)).
By the previous discussion, this means that there is an injective homomorphism
Mod§ — Mod%,. By Lemma 14.1, it maps Mods to Mods. Hence, there exist an
injective homomorphism Mods — Modg:.

Now, S is a closed surface of genus at least two and S’ is a surface of the same
genus with one boundary component. In particular, S’ is not a closed surface
of genus two and the maxima of ranks of abelian subgroups of Modg and Modg:
differ by one. Hence, Theorem 13.7 implies that there exists a diffeomorphism
S — S’. The obvious contradiction proves that there are no injective homomor-

phisms Out(m(S)) — Aut(m(5)). O
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